DOI QR코드

DOI QR Code

Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry

  • Choi, Changkun (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Jeong, Youngsam (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • Received : 2012.11.05
  • Accepted : 2012.12.10
  • Published : 2013.03.20

Abstract

We investigate sensitivity and limit of detection (LOD) of trace copper (Cu) metal using pristine carbon nanotube (CNT) and acidified CNT (ACNT) electrodes. Squarewave based anodic stripping voltammetry (SWASV) is used to determine the stripped Cu concentration. Prior to performing the SWASV measurements, its optimal conditions are determined and with that, effects of potential scan rate and $Cu^{2+}$ concentration on stripping current are evaluated. The measurements indicate that (1) ACNT electrode shows better results than CNT electrode and (2) stripping is controlled by surface reaction. In the given $Cu^{2+}$ concentration range of 25-150 ppb, peak stripping current has linearity with $Cu^{2+}$ concentration. Quantitatively, sensitivity and LOD of Cu in ACNT electrode are 9.36 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb, while their values are 3.99 ${\mu}A\;{\mu}M^{-1}$ and 3 ppb with CNT electrode. We evaluate the effect of three different water solutions (deionized water, tap water and river water) on stripping current and the confirm types of water don't affect the sensitivity of Cu. It turns out by optical inspection and cyclic voltammetry that superiority of ACNT electrode to CNT electrode is attributed to exfoliation of CNT bundles and improved interfacial adhesion occurring during oxidation of CNTs.

Keywords

References

  1. Normile, D. Science 2010, 327, 1568. https://doi.org/10.1126/science.327.5973.1568
  2. Groffman, P. M.; Bain, D. J.; Band, L. E.; Belt, K. T.; Brush, G. S.; Grove, J. M.; Pouyat, R. V.; Yesilonis, J. C.; Zipperer, W. C. Frontiers in Ecology and the Environment 2003, 1, 315. https://doi.org/10.1890/1540-9295(2003)001[0315:DBTRUR]2.0.CO;2
  3. World Health Organization, Guidelines for Drinking Water Quality, http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/.
  4. Zhuang, J.; Zhang, L.; Lu, W.; Shen, D.; Zhu, R.; Pan, D. Int. J. Electrochem. Sci. 2011, 6, 4690.
  5. Kendüzler, E.; Türker, A. R. Anal. Chim. Acta 2003, 480, 259. https://doi.org/10.1016/S0003-2670(03)00024-2
  6. Liang, P.; Yang, J. J. Food Compost. Anal. 2010, 23, 95. https://doi.org/10.1016/j.jfca.2009.01.015
  7. Brasil, J. L.; Martins, L. C.; Ev, R. R.; Dupont, J.; Dias, S. L. P.; Sales, J. A. A.; Airoldi, C.; Lima, E. C. Int. J. Environ. Anal. Chem. 2005, 85, 475. https://doi.org/10.1080/03067310500117350
  8. Caballo-Lopez, A.; Luque de Castro, M. D. Anal. Chem. 2003, 75, 2011. https://doi.org/10.1021/ac026156u
  9. Zhu, X.; Liang, H.; Zhao, S.; Yan, H.; Han, D. Int. J. Environ. Anal. Chem. 2008, 88, 689. https://doi.org/10.1080/03067310801930758
  10. Hung, D. Q.; Nekrassova, O.; Compton, R. G. Talanta 2004, 64, 269. https://doi.org/10.1016/j.talanta.2004.01.027
  11. Chapman, P. J.; Long, Z.; Datskos, P. G.; Archibald, R.; Sepaniak, M. J. Anal. Chem. 2007, 79, 7062. https://doi.org/10.1021/ac070754x
  12. Majid, E., Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T. Anal. Chem. 2006, 78, 762. https://doi.org/10.1021/ac0513562
  13. Dai, X.; Compton, R. G. Electroanalysis 2005, 17, 1325. https://doi.org/10.1002/elan.200403246
  14. Crew, A.; Cowell, D. C.; Hart, J. P. Talanta 2008, 75, 1221. https://doi.org/10.1016/j.talanta.2008.01.043
  15. Shin, S.-H.; Hong, H.-G. Bull. Korean Chem. Soc. 2010, 31, 3077. https://doi.org/10.5012/bkcs.2010.31.11.3077
  16. Kim, I. K.; Park, S. W. Analytical Science and Technology 1996, 4, 93A.
  17. Wang, J. Stripping Analysis: Principles, Instrumentation, and Applications; Vch Pub: USA, 1985.
  18. Koh, S.; Strasser, P. J. Am. Chem. Soc. 2007, 42, 12624.
  19. Nedeltcheva, T.; Atanassova, M.; Dimitrov, J.; Stanislavova, L. Anal. Chim. Acta 2005, 528, 143. https://doi.org/10.1016/j.aca.2004.10.036
  20. Wang, J.; Lu, J.; Hocevar, S. B.; Farias, P. A. M. Anal. Chem. 2000, 72, 3218. https://doi.org/10.1021/ac000108x
  21. Mohadesi, A.; Taher, M. A. Talanta 2007, 72, 95. https://doi.org/10.1016/j.talanta.2006.09.031
  22. Xiao, L.; Wildgoose, G. G.; Compton, R. G. Anal. Chim. Acta 2008, 620, 44. https://doi.org/10.1016/j.aca.2008.05.015
  23. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Carbon 2008, 46, 833. https://doi.org/10.1016/j.carbon.2008.02.012
  24. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. https://doi.org/10.1126/science.282.5386.95
  25. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez- Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
  26. Ly, S. Y.; Yoo, H. S.; Ahn, J. Y.; Nam, K. H. Food Chemistry 2011, 127, 270. https://doi.org/10.1016/j.foodchem.2010.12.107
  27. Kodera, F.; Umeda, M.; Yamada, A. Anal. Chim. Acta 2005, 537, 293. https://doi.org/10.1016/j.aca.2005.01.053
  28. Balasubramanian, K.; Burghard, M. Small 2005, 1, 180. https://doi.org/10.1002/smll.200400118
  29. Choi, C.; Jung, Y.; Kim, N.-J.; Pak, D.; Chung, K.-Y.; Kim, L.-H.; Kwon, Y. Korean Chem. Eng. Res. 2012, 50, 933. https://doi.org/10.9713/kcer.2012.50.5.933
  30. Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Biosens. Bioelectron. 2009, 25, 901. https://doi.org/10.1016/j.bios.2009.09.004
  31. Wen, D.; Liu, Y.; Yang, G.; Dong, S. Electrochim. Acta 2007, 52, 5312. https://doi.org/10.1016/j.electacta.2007.02.006
  32. Betelu, S.; Vautrin-Ul, C.; Chausse, A. Electrochem. Commun. 2009, 11, 383. https://doi.org/10.1016/j.elecom.2008.11.035
  33. Guiseppi-Elie, A.; Lei, C.; Baughman, R. H. Nanotechnology 2002, 13, 35199.
  34. Cai, C.; Chen, J. Anal. Chem. 2004, 332, 75.
  35. Wang, J.; Hocevar, S. B.; Ogorevc, B. Electrochem. Commun. 2004, 6, 176. https://doi.org/10.1016/j.elecom.2003.11.010

Cited by

  1. Chelating functional group attached to carbon nanotubes prepared for performance enhancement of vanadium redox flow battery vol.5, pp.40, 2017, https://doi.org/10.1039/C7TA06672D
  2. Pd–Ag/Graphene Electrochemical Sensor for Chlorophenol Contaminant Determination vol.166, pp.4, 2013, https://doi.org/10.1149/2.1011904jes