DOI QR코드

DOI QR Code

Effect of Foreign Molecules on the SERS of Probe Molecules Trapped in Gaps between Planar Ag and Nano-sized Ag Particles

  • Kim, Kwan (Department of Chemistry, Seoul National University) ;
  • Choi, Jeong-Yong (Department of Chemistry, Seoul National University) ;
  • Shin, Kuan Soo (Department of Chemistry, Soongsil University)
  • Received : 2012.10.29
  • Accepted : 2012.12.11
  • Published : 2013.03.20

Abstract

A few years ago, the plasmon-induced electronic coupling (PIEC) model was proposed in the literature to explain small changes in the surface-enhanced Raman scattering (SERS) in nanogap systems. If this model is correct, it will be very helpful in both basic and application fields. In light of this, we carefully reexamined its appropriateness. Poly(4-vinylpyridine) (P4VP) used in the earlier work was, however, never a proper layer, since most adsorbates not only adsorbed onto Ag nanoparticles sitting on P4VP but also penetrated into the P4VP layer deposited initially onto a flat Ag substrate, ultimately ending up in the SERS hot sites. Using 1,4-phenylenediisocyanide and 4-nitrophenol as the affixing layer and the foreign adsorbate, respectively, we could clearly reveal that the PIEC model is not suited for explaining the Raman signal in a nanogap system. Most of the Raman signal must have arisen from molecules situated at the gap center.

Keywords

References

  1. Chang, R. K.; Furtak, T. E. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
  2. Nie, S.; Emory, S. R. Science 1997, 275, 1102. https://doi.org/10.1126/science.275.5303.1102
  3. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari R. R.; Feld, M. S. Phys. Rev. Lett. 1996, 76, 2444. https://doi.org/10.1103/PhysRevLett.76.2444
  4. Xu, H.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357. https://doi.org/10.1103/PhysRevLett.83.4357
  5. Futamata, M.; Maruyama, Y.; Ishikawa, M. Vib. Spectrosc. 2002, 30, 17. https://doi.org/10.1016/S0924-2031(02)00034-6
  6. Vlckova, B.; Moskovits, M.; Pavel, I.; Siskova, K.; Sladkova, M.; Slouf, M. Chem. Phys. Lett. 2008, 455, 131. https://doi.org/10.1016/j.cplett.2008.02.078
  7. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. J. Phys. Chem. C 2007, 111, 13794. https://doi.org/10.1021/jp0687908
  8. Chu, W.; LeBlanc, R. J.; Williams, C. T.; Kubota, J.; Zaera, F. J. Phys. Chem. B 2003, 107, 14365. https://doi.org/10.1021/jp0359586
  9. Doering, W. E.; Nie, S. J. Phys. Chem. B 2001, 106, 311.
  10. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1999, 71, 4903. https://doi.org/10.1021/ac990616a
  11. Kim, N. H.; Lee, S. J.; Kim, K. Chem. Commun. 2003, 724.
  12. Cao, P. G.; Gu, R. N.; Tian, Z. Q. Langmuir 2002, 18, 7609. https://doi.org/10.1021/la025570m
  13. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  14. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419. https://doi.org/10.1126/science.1089171
  15. Aravind, P. K.; Metiu, H. J. Phys. Chem. 1982, 86, 5076. https://doi.org/10.1021/j100223a007
  16. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964.
  17. Kinnan, M. K.; Chumanov, G. J. Phys. Chem. C 2007, 111, 18010. https://doi.org/10.1021/jp074002i
  18. Hudson, S. D.; Chumanov, G. J. Phys. Chem. C 2008, 112, 19866. https://doi.org/10.1021/jp804313e
  19. Kim, K.; Shin, D.; Kim, K. L.; Shin, K. S. Phys. Chem. Chem. Phys. 2010, 12, 3747. https://doi.org/10.1039/b917543a
  20. Mubeen, S.; Zhang, S.; Kim, N.; Lee, S.; Kramer, S.; Xu, H.; Moskovits, M. Nano Lett. 2012, 12, 2088. https://doi.org/10.1021/nl300351j
  21. Ikeda, K.; Suzuki, S.; Uosaki, K. Nano Lett. 2011, 11, 1716. https://doi.org/10.1021/nl200251a
  22. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  23. Kissinger, G.; Kissinger, W. Phys. Stat. Sol. A 1991, 123, 185. https://doi.org/10.1002/pssa.2211230117
  24. Osman, M. A.; Keller, B. A. Appl. Surf. Sci. 1996, 99, 261. https://doi.org/10.1016/0169-4332(96)00101-8
  25. Pockrand, I. Surface enhanced Raman vibrational studies at solid/gas interfaces; Springer-Verlag: Berlin; New York, 1984.
  26. Kim, K.; Kim, K. L.; Lee, S. J. Chem. Phys. Lett. 2005, 403, 77. https://doi.org/10.1016/j.cplett.2004.12.025
  27. Kim, K.; Ryoo, H.; Lee, Y. M.; Shin, K. S. J. Colloid. Interf. Sci. 2010, 342, 479. https://doi.org/10.1016/j.jcis.2009.10.019
  28. Ryoo, H.; Kim, K.; Shin, K. S. Vib. Spectrosc. 2010, 53, 158. https://doi.org/10.1016/j.vibspec.2010.01.020
  29. Kim, K.; Ryoo, H.; Shin, K. S. Langmuir 2010, 26, 10827. https://doi.org/10.1021/la100650p
  30. Michota, A.; Bukowska, J. J. Raman. Spectrosc. 2003, 34, 21. https://doi.org/10.1002/jrs.928
  31. Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702. https://doi.org/10.1021/j100099a038
  32. Kim, K.; Yoon, J. K. J. Phys. Chem. B 2005, 109, 20731. https://doi.org/10.1021/jp052829b
  33. Kim, K.; Lee, H. B.; Yoon, J. K.; Shin, D.; Shin, K. S. J. Phys. Chem. C 2010, 114, 13589. https://doi.org/10.1021/jp105005a
  34. Lee, Y. M.; Kim, K.; Shin, K. S. J. Phys. Chem. C 2008, 112, 10715. https://doi.org/10.1021/jp802712r
  35. Lee, H. M.; Kim, M. S.; Kim, K. Vib. Spectrosc. 1994, 6, 205. https://doi.org/10.1016/0924-2031(94)85007-0
  36. Fieldson, G. T.; Barbari, T. A. Polymer 1993, 34, 1146. https://doi.org/10.1016/0032-3861(93)90765-3
  37. Pignatello, J. J.; Xing, B. S. Environ. Sci. Technol. 1996, 30, 1. https://doi.org/10.1021/es940683g
  38. Ayora, M. J.; Ballesteros, L.; Perez, R.; Ruperez, A.; Laserna, J. J. Anal. Chim. Acta 1997, 355, 15. https://doi.org/10.1016/S0003-2670(97)81607-8
  39. Tanaka, Y.; Nakajima, A.; Watanabe, A.; Ohno, T.; Ozaki, Y. Vib. Spectrosc. 2004, 34, 157. https://doi.org/10.1016/j.vibspec.2003.09.009
  40. Ni, F.; Thomas, L.; Cotton, T. M. Anal. Chem. 1989, 61, 888. https://doi.org/10.1021/ac00183a021
  41. Shin, D.; Kim, K.; Shin, K. S. ChemPhysChem 2010, 11, 83. https://doi.org/10.1002/cphc.200900780
  42. Kim, K.; Lee, J. W.; Shin, D. H.; Choi, J. Y.; Shin, K. S. Analyst 2012, 137, 1930. https://doi.org/10.1039/c2an16044g