DOI QR코드

DOI QR Code

The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts

  • Park, Seong-Hun (Department of Chemistry, Faculty of Liberal Art and Teacher Education, University of Seoul) ;
  • Huh, Young-Duk (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2012.10.26
  • Accepted : 2012.12.04
  • Published : 2013.03.20

Abstract

Layered mixed metal hydroxy double salts (HDS) with the formulas $(Cu_{0.75}Ni_{0.25})_2(OH)_3NO_3$ ((Cu, Ni)-HDS) and $Cu_2(OH)_3NO_3$ ((Cu, Cu)-HDS) were prepared via slow hydrolysis reactions of CuO with $Ni(NO_3)_2$ and $Cu(NO_3)_2$, respectively. The crystal structures, morphologies, bonding natures, and magnetic properties of (Cu, Ni)-HDS and (Cu, Cu)-HDS were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a superconducting quantum interference device (SQUID). Even though (Cu, Ni)-HDS has a similar layered structure to that of (Cu, Cu)-HDS, the bonding nature of (Cu, Ni)-HDS is slightly different from that of (Cu, Cu)-HDS. Therefore, the magnetic properties of (Cu, Ni)-HDS are significantly different from those of (Cu, Cu)-HDS. The origin of the abnormal magnetic properties of (Cu, Ni)-HDS can be explained in terms of the bonding natures of the interlayer and intralayer structures.

Keywords

References

  1. Clearfield, A. Prog. Inorg. Chem. 1998, 47, 371.
  2. Cao, G.; Hong, H. G.; Mallouck, T. E. Acc. Chem. Res. 1992, 25, 420. https://doi.org/10.1021/ar00021a007
  3. Arizaga, G. G. C.; Satynarayana, K. G.; Wypych, F. Solid State Ionics 2007, 178, 1143. https://doi.org/10.1016/j.ssi.2007.04.016
  4. Park, S. H.; Kim, H. J. J. Am. Chem. Soc. 2004, 126, 14368. https://doi.org/10.1021/ja047425w
  5. de Jong, J. J. Magnetic Properties of Layered Transition Metal Complexes; Kluwer Academic Publishers: Dordrecht, 1990.
  6. Girtu, M. A.; Wynn, C. M.; Fujita, W.; Awaga, K.; Epstein, A. J. Phys. Rev. B 2000, 61, 4117.
  7. Rogez, G.; Massobrio, C.; Rabu, P.; Drillon, M. Chem. Soc. Rev. 2011, 40, 1031. https://doi.org/10.1039/c0cs00159g
  8. Fujita, W.; Awaga, K. Inorg. Chem. 1996, 35, 1915. https://doi.org/10.1021/ic950965x
  9. Rabu, P.; Rouba, S.; Laget, V.; Hornick, C.; Drillon, M. Chem. Commun. 1996, 1107.
  10. Kurmoo, M.; Day, P.; Derory, A.; Estournès, C.; Poinsot, R.; Stead, M. J.; Kepert, C. J. J. Solid State Chem. 1999, 145, 452. https://doi.org/10.1006/jssc.1999.8147
  11. Park, S. H.; Lee, C. H.; Lee, C. E.; Ri, H. C.; Shim, S. Y. Mater. Res. Bull. 2002, 37, 1773. https://doi.org/10.1016/S0025-5408(02)00847-4
  12. Park, S. H.; Lee, C. E. J. Phys. Chem. B 2005, 109, 1118. https://doi.org/10.1021/jp046902u
  13. Park, S. H.; Lee, C. E. Bull. Korean Chem. Soc. 2006, 27, 1587. https://doi.org/10.5012/bkcs.2006.27.10.1587
  14. Wu, J.; Gangopadhyay, A. K.; Kanjanaboos, P.; Solin, S. A. J. Phys.: Condens. Matter 2010, 22, 334211. https://doi.org/10.1088/0953-8984/22/33/334211
  15. Wu, J.; Wilderboer, J. S.; Werner, F.; Seidel, A.; Nussinov, Z.; Solin, S. A. Europhys. Lett. 2011, 93, 67001. https://doi.org/10.1209/0295-5075/93/67001
  16. Zotov, N.; Petrov, K.; Dimitrova-Pankova, M. J. Phys. Chem. Solids 1990, 51, 1199. https://doi.org/10.1016/0022-3697(90)90102-L
  17. Petrov, K.; Zotov, N.; Mirtcheva, E.; García-Martínez, O.; Rojas, R. M. J. Mater. Chem. 1994, 4, 611. https://doi.org/10.1039/jm9940400611
  18. Atanasov, M.; Petrov, K.; Mirtcheva, E.; Friebel, C.; Reinen, D. J. Solid State Chem. 1995, 118, 303. https://doi.org/10.1006/jssc.1995.1349
  19. Choy, J. H.; Kwon, Y. M.; Han, K. S.; Song, S. W.; Chang, S. H. Mater. Lett. 1998, 34, 356. https://doi.org/10.1016/S0167-577X(97)00191-2
  20. Rojas, R.; Barriga, C.; Ulibarri, M. A.; Malet, P.; Rives, V. J. Mater. Chem. 2002, 12, 1071. https://doi.org/10.1039/b110145e
  21. Izaoumen, N.; Cherrab, M.; Rissouli, K.; Benkhouja, K.; Jaafari, K.; Fahad, M. J. Phys. IV France 2005, 123, 291. https://doi.org/10.1051/jp4:2005123052
  22. Rajamathi, J. T.; Raviraj, N. H.; Ahmed, M. F.; Rajamathi, M. Solid State Sci. 2009, 11, 2080. https://doi.org/10.1016/j.solidstatesciences.2009.09.001
  23. Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1993, 32, 1209. https://doi.org/10.1021/ic00059a030
  24. Oswald, H. R. Z. Kristallogr. 1961, 116, 210. https://doi.org/10.1524/zkri.1961.116.3-6.210
  25. Biswick, T.; Jones, W.; Pacula, A.; Serwicka, E. J. Solid State Chem. 2006, 179, 49. https://doi.org/10.1016/j.jssc.2005.09.040
  26. Yuvaraj, S.; Fan-Yuan, L.; Tsong-Huei, C.; Chuin-Tih, Y. J. Phys. Chem. B 2003, 107, 1044. https://doi.org/10.1021/jp026961c
  27. Addison, C. C.; Gatehouse, B. M. J. Chem. Soc. 1960, 613. https://doi.org/10.1039/jr9600000613
  28. Gatehouse, B. M.; Livingstone, S. E.; Nyholm, R. S. J. Chem. Soc. 1957, 505. https://doi.org/10.1039/jr9570000505
  29. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley & Sons: New York, 1997.
  30. Chouillet, C.; Krafft, J. M.; Louis, C.; Lauron-Pernot, H. Spectrochim. Acta A 2004, 60, 505. https://doi.org/10.1016/S1386-1425(03)00255-5
  31. Ruiz, E.; Llunell, M.; Cano, J.; Rabu, P.; Drillon, M.; Massobrio, C. J. Phys. Chem. B 2006, 110, 115. https://doi.org/10.1021/jp056386n
  32. Blake, A. B.; Hatfield, W. E. J. Chem. Soc., Dalton Trans. 1979, 1725.
  33. Park, S. H.; Oh, I. H.; Park, S.; Park, Y.; Kim, J. H.; Huh, Y. D. Dalton Trans. 2012, 41, 1237. https://doi.org/10.1039/c1dt11544h
  34. Miller, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. 1994, 33, 385. https://doi.org/10.1002/anie.199403851

Cited by

  1. ChemInform Abstract: The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts. vol.44, pp.32, 2013, https://doi.org/10.1002/chin.201332013
  2. ZnO-assisted synthesis of multilayered Cu2(OH)3NO3 nanoplates and application removal of methyl orange vol.739, pp.None, 2020, https://doi.org/10.1016/j.cplett.2019.137018