DOI QR코드

DOI QR Code

Microstructural Feature of Full-densified W-Cu Nanocomposites Containing Low Cu Content

  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University-ERICA) ;
  • Jung, Sung-Soo (Department of Metallurgy and Materials Science, Hanyang University-ERICA) ;
  • Choi, Joon-Phil (Department of Metallurgy and Materials Science, Hanyang University-ERICA) ;
  • Lee, Geon-Yong (Department of Metallurgy and Materials Science, Hanyang University-ERICA)
  • 투고 : 2013.03.30
  • 심사 : 2013.04.15
  • 발행 : 2013.04.28

초록

The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was $427{\pm}22$ Hv much higher than that ($276{\pm}19$ Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.

키워드

참고문헌

  1. R. M. German, Powder Metallurgy, second ed., Princeton, New Jersey, 1997.
  2. I. Sabirov and R. Pippan: Scr. Mater., 52 (2005) 1293. https://doi.org/10.1016/j.scriptamat.2005.02.017
  3. R. M. German, K. F. Hens and J. L. Johnson: Int. J. Powder Metall., 30 (1994) 205.
  4. J. L. Johnson and R. M. German: Metall. Trans., A 24A (1993) 2369.
  5. I. H. Moon and J. S. Lee: Powder Metall., 22 (1979) 5. https://doi.org/10.1179/pom.1979.22.1.5
  6. I. H. Moon and J. S. Lee: Powder Metall. Int., 9 (1977) 23.
  7. J. S. Lee and T. H. Kim: Nanostr. Mat., 6 (1995) 691. https://doi.org/10.1016/0965-9773(95)00152-2
  8. E. S. Yoon, J. S. Lee, S. T. Oh and B. K. Kim: Int. J. Refract. Met. Hard Mater., 20 (2002) 201. https://doi.org/10.1016/S0263-4368(02)00003-3
  9. J. S. Lee and J. H. Yu: Z. Metallkd., 92 (2001) 7.
  10. E. G. Zukas, P. S. Rogers and R. S. Rogers: Z. Metallkd., 67 (1976) 591.
  11. N. K. Prokushev and V. P. Smirnov: Poroshk. Met., 9 (1986) 30.
  12. T. H. Kim, J. H. Yu and J. S. Lee: Nanostr. Mat., 9 (1997) 213. https://doi.org/10.1016/S0965-9773(97)00056-1
  13. E. S. Yoon, J. H. Yu and J. S. Lee: J. Kor. Powder Metall. Inst., 4 (1997) 304.
  14. C. W. Lee, E. S. Yoon and J. S. Lee: J. Kor. Powder. Metall. Inst., 8 (2001) 49.
  15. S. S. Jung, Y. S. Kang and J. S. Lee: J. Kor. Powder. Metall. Inst., 13 (2006) 205. https://doi.org/10.4150/KPMI.2006.13.3.205
  16. S. S. Jung, E. S. Yoon and J. S. Lee: Kor. J. Met. Mater., 47 (2009) 597.
  17. R. Warren: J. Mater. Sci., 7 (1972) 1434. https://doi.org/10.1007/BF00574935
  18. J. Das, U. R. Kiran, A. Chakraborty and N. E. Prasad: Int. J. Refract. Met. Hard Mater., 27 (2009) 577. https://doi.org/10.1016/j.ijrmhm.2008.08.003