DOI QR코드

DOI QR Code

COSMO-SkyMed SAR 영상을 이용한 동남극 Campbell 빙하의 연간 면적변화 및 유속 추정

Estimation of Annual Variation of Ice Extent and Flow Velocity of Campbell Glacier in East Antarctica Using COSMO-SkyMed SAR Images

  • 한향선 (강원대학교 지구물리학과) ;
  • 지영훈 (강원대학교 지구물리학과) ;
  • 이훈열 (강원대학교 지구물리학과)
  • Han, Hyangsun (Department of Geophysics, Kangwon National University) ;
  • Ji, Younghun (Department of Geophysics, Kangwon National University) ;
  • Lee, Hoonyol (Department of Geophysics, Kangwon National University)
  • 투고 : 2013.01.02
  • 심사 : 2013.02.06
  • 발행 : 2013.02.28

초록

동남극의 Campbell 빙하는 테라노바 만으로 유출되는 주요한 빙하 중 하나이다. Campbell 빙하는 동남극 빙상의 질량 균형에 영향을 미치고 있기 때문에 정확한 면적 및 흐름속도의 분석이 필요하다. 그러나 Campbell 빙하에 대한 연구는 1990년 이후로 거의 수행되지 않았다. 이 연구에서는 2010년 6월부터 2012년 1월 사이에 Campbell 빙하가 촬영된 59장의 COSMO-SkyMed SAR 영상을 획득하였다. 디지타이징 방법과 영상정합에 의한 변위추적 기법을 적용하여 Campbell Glacier Tongue의 면적과 Campbell 빙하의 흐름속도를 추정하였다. Campbell Glacier Tongue의 면적은 여름철에 얼음의 붕괴로 인해 감소하고 겨울철에 증가하지만 증감의 폭이 크지 않았고, 평균 75.5 $km^2$의 면적을 유지하였다. Campbell Glacier Tongue의 유출량은 $0.58{\pm}0.12km^3/yr$로 추정되었는데, 이는 1989년에 비해 증가한 것이다. Campbell Glacier Tongue의 흐름속도는 181-268 m/yr로서 1988-1989년의 흐름속도에 비해 빠르며, 이는 빙하의 유출량 증가에 영향을 준 것으로 해석되었다.

Campbell Glacier in East Antarctica is one of the major glaciers that flow into Terra Nova Bay. It is necessary to estimate accurate extent and flow velocity of Campbell Glacier which influences the dynamics of mass balance of East Antarctic Ice Sheet. However, few studies on Campbell Glacier have been performed since 1990s. In this study, we obtained a total of 59 COSMO-SkyMed SAR images over Campbell Glacier from June 2010 to January 2012. We estimated variations in the extent of Campbell Glacier Tongue and flow velocity of Campbell Glacier by applying the image digitizing and the offset tracking by image matching. Although the extent of Campbell Glacier Tongue decreased in summertime due to ice calving and increased in wintertime, the variation in the extent was very small. Campbell Glacier Tongue retained mean extent of 75.5 $km^2$. The ice discharge of Campbell Glacier Tongue was estimated to be $0.58{\pm}0.12km^3/yr$, which was bigger than in 1989. The flow velocity over Campbell Glacier Tongue was estimated to be from 181 to 268 m/yr that was faster than in 1988-1989, which contributed to the increase in the ice discharge of the glacier.

키워드

참고문헌

  1. Bell, R.E., M. Studinger, C.A. Shuman, M.A. Fahnestock, and I. Joughin, 2007. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams, Nature, 445: 904-907. https://doi.org/10.1038/nature05554
  2. Berthiera, E., H. Vadon, D. Baratoux, Y. Arnaud, C. Vincent, K.L. Feigl, F. Remy, and B. Legresy, 2005. Surface motion of mountain glaciers derived from satellite optical imagery, Remote Sensing of Environment, 95(1): 14-28. https://doi.org/10.1016/j.rse.2004.11.005
  3. Bianchessi, N. and G. Righini, 2008. Planning and scheduling algorithms for the COSMO-SkyMed constellation, Aerospace Science and Technology, 12(7): 535-544. https://doi.org/10.1016/j.ast.2008.01.001
  4. Covello, F., F. Battazza, A. Coletta, E. Lopinto, C. Fiorentino, L. Pietranera, G. Valentini, and S. Zoffoli, 2010. COSMO-SkyMed an existing opportunity for observing the Earth, Journal of Geodynamics, 49(3-4): 171-180. https://doi.org/10.1016/j.jog.2010.01.001
  5. Dyurgerov, M. and G.J. McCabe, 2006. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions, Arctic, Antarctic, and Alpine Research, 38(2): 190-197. https://doi.org/10.1657/1523-0430(2006)38[190:ABAGMW]2.0.CO;2
  6. Fallourd, R., O. Harant, E. Trouve, J. Nicolas, M. Gay, A. Walpersdorf, J. Mugnier, J. Serafini, D. Rosu, L. Bombrun, G. Vasile, N. Cotte, F. Vernier, F. Tupin, L. Moreau, and P. Bolon, 2011. Monitoring temperate glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2): 372-386. https://doi.org/10.1109/JSTARS.2010.2096200
  7. Frezzotti, M., 1993. Glaciological study in Terra Nova Bay, Antarctica, inferred from remote sensing analysis, Annals of Glaciology, 17: 63-71. https://doi.org/10.1017/S0260305500012623
  8. Frezzotti, M., 1997. Ice front fluctuation, iceberg calving flux and mass balance of Victoria Land glaciers, Antarctic Science, 9(1): 61-73. https://doi.org/10.1017/s0954102097000096
  9. Han, H. and H. Lee, 2011. Analysis of surface displacement of glaciers and sea ice around Canisteo Peninsula, West Antarctica, by using 4-pass DInSAR technique, Korean Journal of Remote Sensing, 27(5): 535-542 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.5.535
  10. Han, H. and H. Lee, 2012. COSMO-SKYMed AO Projects - Tidal deflection characteristics of Campbell Glacier, East Antarctica, observed by double-differential SAR interferometry, Proc. of 2012 International Geoscience and Remote Sensing Symposium, Munich, Jul. 22-27, pp. 4465-4468.
  11. Monaghan, A.J., D.H. Bromwich, R.L. Fogt, S. Wang, P.A. Mayewski, D.A. Dixon, A. Ekaykin, M. Frezzotti, I. Goodwin, E. Isaksson, S.D. Kaspari, V.I. Morgan, H. Oerter, T.D. van Ommen, C.J. van der Veen, and J. Wen, 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year, Science, 313(5788): 827-831. https://doi.org/10.1126/science.1128243
  12. Rignot, E., 1996. Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry, Journal of Glaciology, 42(142): 476-485. https://doi.org/10.1017/S0022143000003464
  13. Rignot, E., 1998. Fast recession of a West Antarctic glacier, Science, 281(5376): 549-551. https://doi.org/10.1126/science.281.5376.549
  14. Rignot, E., 2002. Mass balance of East Antarctic glaciers and ice shelves from satellite data, Annals of Glaciology, 34: 217-227. https://doi.org/10.3189/172756402781817419
  15. Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas, 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf, Geophysical Research Letters, 31, L18401. https://doi.org/10.1029/2004GL020697
  16. Rignot, E., J.L. Bamber, M.R. van den Broeke, C. Davis, Y. Li, W.J. van de Berg, and E. van Meijgaard, 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling, Nature Geoscience, 1: 106-110. https://doi.org/10.1038/ngeo102
  17. Rignot, E. and R.H. Thomas, 2002. Mass balance of polar ice sheet, Science, 297(5586): 1502-1506. https://doi.org/10.1126/science.1073888
  18. Rott, H., 2009. Advances in interferometric synthetic aperture radar (InSAR) in earth system science, Progress in Physical Geography, 33(6): 769-791. https://doi.org/10.1177/0309133309350263
  19. Scambos, T.A., C. Hulbe, M. Fahnestock, and J. Bohlander, 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, Journal of Glaciology, 46(154): 516-530. https://doi.org/10.3189/172756500781833043
  20. Scambos, T.A., J.A. Bohlander, C.A. Shuman, and P. Skvarca, 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophysical Research Letters, 31, L18402. https://doi.org/10.1029/2004GL020670
  21. Scherler, D., S. Leprince, and M.R. Strecker, 2008. Glacier-surface velocities in alpine terrain from optical satellite imagery-Accuracy improvement and quality assessment, Remote Sensing of Environment, 112(10): 3806-3819. https://doi.org/10.1016/j.rse.2008.05.018
  22. Skvarca, P., W. Rack, H. Rott, and T.I. Donangelo, 1999. Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview, Polar Research, 18(2): 151-157. https://doi.org/10.1111/j.1751-8369.1999.tb00287.x
  23. Stearns, L.A., B.E. Smith, and G.S. Hamilton, 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods, Nature Geoscience, 1: 827-831. https://doi.org/10.1038/ngeo356
  24. Stenni, B., F. Serra, M. Frezzotti, V. Maggi, R. Traversi, S. Becagli, and R. Roberto, 2000. Snow accumulation rates in northern Victoria Land, Antarctica, by firn-core analysis, Journal of Glaciology, 46(155): 541-552. https://doi.org/10.3189/172756500781832774
  25. Strozzi, T., A. Kouraev, A. Wiesmann, U. Wegmuller, A. Sharov, and C. Werner, 2008. Estimation of Arctic glacier motion with satellite L-band SAR data, Remote Sensing of Environment, 112(3): 636-645. https://doi.org/10.1016/j.rse.2007.06.007
  26. Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C.L. Werner, 2002. Glacier motion estimation using SAR offset-tracking procedures, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391. https://doi.org/10.1109/TGRS.2002.805079
  27. Trouve, E., G. Vasile, M. Gay, L. Bombrun, P. Grussenmeyer, T. Landes, J. Nicolas, P. Bolon, I. Petillot, A. Julea, L. Valet, J. Chanussot, and M. Koehl, 2007. Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: potentials and limits, IEEE Transactions on Geoscience and Remote Sensing, 45(4): 905-924. https://doi.org/10.1109/TGRS.2006.890554
  28. Weydahl, D.J., 2001. Analysis of ERS tandem SAR coherence from glaciers, valleys, and fjord ice on Svalbard, IEEE Transactions on Geoscience and Remote Sensing, 39(9): 2029-2039. https://doi.org/10.1109/36.951093

피인용 문헌

  1. Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique vol.29, pp.4, 2013, https://doi.org/10.7780/kjrs.2013.29.4.3
  2. Surface strain rates and crevassing of Campbell Glacier Tongue in East Antarctica analysed by tide-corrected DInSAR vol.8, pp.4, 2017, https://doi.org/10.1080/2150704X.2016.1271158
  3. 고해상도 DEM을 활용한 로스해 Campbell 빙하의 지반접지선 추정 vol.34, pp.3, 2013, https://doi.org/10.7780/kjrs.2018.34.3.9
  4. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1
  5. Landsat 다중분광 영상정합을 이용한 동남극 난센 빙붕의 2000-2017년 흐름속도 변화 분석 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.2
  6. TerraSAR-X 위성영상을 활용한 백두산 천지 얼음 면적 변화 모니터링 vol.35, pp.2, 2019, https://doi.org/10.7780/kjrs.2019.35.2.11
  7. Multibeam Bathymetry and Distribution of Clay Minerals on Surface Sediments of a Small Bay in Terra Nova Bay, Antarctica vol.11, pp.1, 2013, https://doi.org/10.3390/min11010072
  8. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9
  9. 다목적실용위성 영상 활용 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.3.1
  10. KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측 vol.37, pp.6, 2013, https://doi.org/10.7780/kjrs.2021.37.6.3.11