DOI QR코드

DOI QR Code

Bayesian network based Music Recommendation System considering Multi-Criteria Decision Making

다기준 의사결정 방법을 고려한 베이지안 네트워크 기반 음악 추천 시스템

  • 김남국 (공주대학교 컴퓨터공학과 컴퓨터소프트웨어 전공) ;
  • 이상용 (공주대학교 컴퓨터공학부)
  • Received : 2013.01.30
  • Accepted : 2013.03.20
  • Published : 2013.03.31

Abstract

The demand and production for mobile music increases as the number of smart phone users increase. Thus, the standard of selection of a user's preferred music has gotten more diverse and complicated as the range of popular music has gotten wider. Research to find intelligent techniques to ingeniously recommend music on user preferences under mobile environment is actively being conducted. However, existing music recommendation systems do not consider and reflect users' preferences due to recommendations simply employing users' listening log. This paper suggests a personalized music-recommending system that well reflects users' preferences. Using AHP, it is possible to identify the musical preferences of every user. The user feedback based on the Bayesian network was applied to reflect continuous user's preference. The experiment was carried out among 12 participants (four groups with three persons for each group), resulting in a 87.5% satisfaction level.

최근 스마트 기기 사용자의 증가에 따라 모바일 음악에 대한 수요와 생산이 꾸준히 증가하고 있다. 이에 따라 대중화된 음악의 폭이 넓어지면서 사용자가 선호하는 음악에 대한 선택의 기준 또한 매우 다양해지고 복잡해지는 추세이다. 이러한 이유로 모바일 환경에서 사용자 개인이 선호하는 음악을 정교하게 추천하기 위한 지능적 음악 추천 기법에 대한 연구가 활발히 진행되고 있다. 그러나 기존의 음악 추천시스템은 청취로그를 이용한 단순 추천 방법을 사용하고 있어 사용자의 선호도를 제대로 고려하지 못하고 있다. 본 논문에서는 사용자의 선호도를 반영한 개인화된 적응형 음악 추천 시스템을 제안한다. 본 시스템에서는 계층적 의사결정 도구인 AHP를 이용하여 사용자의 개개인의 음악적 선호도를 반영한 음악 추천이 가능토록 하였으며, 베이지안 네트워크 기반의 사용자 피드백 통해 지속적인 사용자의 음악적 선호도를 반영하도록 하였다. 본 시스템의 성능을 평가하기 위해 12명의 실험자를 각각 3명씩 4그룹으로 나누어 실험하였으며 그 결과 87.5%의 추천 만족도를 얻었다.

Keywords