DOI QR코드

DOI QR Code

A WblA-Binding Protein, SpiA, Involved in Streptomyces Oxidative Stress Response

  • Kim, Jin-Su (Department of Biological Engineering, Inha University) ;
  • Lee, Han-Na (Department of Biological Engineering, Inha University) ;
  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Pil (Division of Biotechnology, The Catholic University of Korea) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • Received : 2013.06.13
  • Accepted : 2013.07.16
  • Published : 2013.10.28

Abstract

The Streptomyces coelicolor wblA gene is known to play a negative role in both antibiotic biosynthesis and the expression of genes responding to oxidative stress. Recently, WhcA, a WblA ortholog protein, was confirmed to interact with dioxygenase-encoding SpiA ($\underline{s}$tress $\underline{p}$rotein $\underline{i}$nteracting with Whc$\underline{A}$) in Corynebacterium glutamicum. We describe here the identification of a SpiA ortholog SCO2553 protein ($SpiA_{sc}$) that interacts with WblA in S. coelicolor. Using heterologous expression in E. coli and in vitro pull-down assays, we show that WblA specifically binds $SpiA_{sc}$, and is influenced by oxidants such as diamide. These data indicate that the interaction between WblA and $SpiA_{sc}$ is not only specific but also modulated by the redox status of the cell. Moreover, a $spiA_{sc}$-disruption mutant exhibited a less sensitive response to the oxidative stress induced by diamide present in solid plate culture. Real-time RT-PCR analysis also showed that transcription levels of oxidative stress response genes (sodF, sodF2, and trxB) were higher in the $spiA_{sc}$-deletion mutant than in wild-type S. coelicolor. These results show that $SpiA_{sc}$ negatively regulates WblA during oxidative stress responses in S. coelicolor.

Keywords

References

  1. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, et al. 2004. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51: 1615-1628. https://doi.org/10.1111/j.1365-2958.2003.03949.x
  2. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  3. Choi WW, Park SD, Lee SM, Kim HB, Kim Y, Lee HS. 2009. The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum. FEMS. Microbiol. Lett. 290: 32-38. https://doi.org/10.1111/j.1574-6968.2008.01398.x
  4. Davis NK, Chater KF. 1992. The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol. Gen. Genet. 232: 351-358.
  5. den Hengst CD, Buttner MJ. 2008. Redox control in Actinobacteria. Biochim. Biophys. Acta 1780: 1201-1216. https://doi.org/10.1016/j.bbagen.2008.01.008
  6. Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. 2011. The Actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 157: 1312-1328. https://doi.org/10.1099/mic.0.047555-0
  7. Geiman DE, Raghunand TR, Agarwal N, Bishai WR. 2006. Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob. Agents Chemother. 50: 2836-2841. https://doi.org/10.1128/AAC.00295-06
  8. Gomez JE, Bishai WR. 2000. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc. Natl. Acad. Sci. USA 97: 8554-8559. https://doi.org/10.1073/pnas.140225297
  9. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546. https://doi.org/10.1073/pnas.0337542100
  10. Hopwood DA. 1999. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145: 2183-2202. https://doi.org/10.1099/00221287-145-9-2183
  11. Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES. 2007. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 189: 4315-4319. https://doi.org/10.1128/JB.01789-06
  12. Kim JS, Lee HN, Kim P, Lee HS, Kim ES. 2012. Negative role of wblA in response to oxidative stress in Streptomyces coelicolor. J. Microbiol. Biotechnol. 22: 736-741. https://doi.org/10.4014/jmb.1112.12032
  13. Kim SH, Lee HN, Kim HJ, Kim ES. 2011. Transcriptome analysis of an antibiotic downregulator mutant and synergistic Actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. Appl. Environ. Microbiol. 77: 1872-1877. https://doi.org/10.1128/AEM.02346-10
  14. Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS. 2005. The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem. Biophys. Res. Commun. 337: 757-764. https://doi.org/10.1016/j.bbrc.2005.09.115
  15. Lee HN, Huang J, Im JH, Kim SH, Noh JH, Cohen SN, et al. 2010. Putative TetR family transcriptional regulator SCO1712 encodes an antibiotic downregulator in Streptomyces coelicolor. Appl. Environ. Microbiol. 76: 3039-3043. https://doi.org/10.1128/AEM.02426-09
  16. Nah JH, Park SH, Yoon HM, Choi SS, Lee CH, Kim ES. 2012. Identification and characterization of wblA-dependent tmcT regulation during tautomycetin biosynthesis in Streptomyces sp. CK4412. Biotechnol. Adv. 30: 202-209. https://doi.org/10.1016/j.biotechadv.2011.05.004
  17. Noh JH, Kim SH, Lee HN, Lee SY, Kim ES. 2010. Isolation and genetic manipulation of the antibiotic down-regulatory gene, wblA ortholog for doxorubicin-producing Streptomyces strain improvement. Appl. Microbiol. Biotechnol. 86: 1145-1153. https://doi.org/10.1007/s00253-009-2391-z
  18. Oganesyan N, Kim SH, Kim R. 2005. On-column protein refolding for crystallization. J. Struct. Funct. Genomics 6: 177-182. https://doi.org/10.1007/s10969-005-2827-3
  19. Park JS, Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, et al. 2012. The role of Corynebacterium glutamicum spiA gene in whcAmediated oxidative stress gene regulation. FEMS Microbiol. Lett. 331: 63-69. https://doi.org/10.1111/j.1574-6968.2012.02554.x
  20. Park JS, Shin S, Kim ES, Kim P, Kim Y, Lee HS. 2011. Identification of SpiA that interacts with Corynebacterium glutamicum WhcA using a two-hybrid system. FEMS Microbiol. Lett. 322: 8-14. https://doi.org/10.1111/j.1574-6968.2011.02318.x
  21. Rabyk M, Ostash B, Rebets Y, Walker S, Fedorenko V. 2011. Streptomyces ghanaensis pleiotropic regulatory gene wblA(gh) influences morphogenesis and moenomycin production. Biotechnol. Lett. 33: 2481-2486. https://doi.org/10.1007/s10529-011-0728-z
  22. Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, et al. 2007. Mycobacterium tuberculosis WhiB3 responds to $O_2$ and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc. Natl. Acad. Sci. USA 104: 11562-11567. https://doi.org/10.1073/pnas.0700490104
  23. Soliveri JA, Gomez J, Bishai WR, Chater KF. 2000. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146: 333-343. https://doi.org/10.1099/00221287-146-2-333
  24. Steyn AJ, Collins DM, Hondalus MK, Jacobs Jr WR, Kawakami RP, Bloom BR. 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl. Acad. Sci. USA 99: 3147-3152. https://doi.org/10.1073/pnas.052705399
  25. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71: 495-548. https://doi.org/10.1128/MMBR.00005-07

Cited by

  1. In conditions of over-expression, WblI, a WhiB-like transcriptional regulator, has a positive impact on the weak antibiotic production of Streptomyces lividans TK24 vol.12, pp.3, 2013, https://doi.org/10.1371/journal.pone.0174781
  2. The actinobacterial WhiB‐like (Wbl) family of transcription factors vol.110, pp.5, 2013, https://doi.org/10.1111/mmi.14117
  3. SufR, a [4Fe-4S] Cluster-Containing Transcription Factor, Represses the sufRBDCSU Operon in Streptomyces avermitilis Iron-Sulfur Cluster Assembly vol.86, pp.18, 2013, https://doi.org/10.1128/aem.01523-20
  4. WblA, a global regulator of antibiotic biosynthesis in Streptomyces vol.48, pp.3, 2013, https://doi.org/10.1093/jimb/kuab007