DOI QR코드

DOI QR Code

Serial MR Imaging of Magnetically Labeled Humen Umbilical Vein Endothelial Cells in Acute Renal Failure Rat Model

급성 신부전 쥐 모델에서 자기 표지된 인간 제대정맥 내피세포의 연속 자기공명영상

  • Lee, Sun Joo (Department of Radiology, College of Medicine, Inje University, Busan Paik Hospital) ;
  • Lee, Sang Yong (Department of Diagnostic Radiology, Chonbuk National University Hospital & Medical School) ;
  • Kang, Kyung Pyo (Department of Internal Medicine Chonbuk National University Hospital & Medical School) ;
  • Kim, Won (Department of Internal Medicine Chonbuk National University Hospital & Medical School) ;
  • Park, Sung Kwang (Department of Internal Medicine Chonbuk National University Hospital & Medical School)
  • 이선주 (인제대학교 의과대학 부산백병원 영상의학과) ;
  • 이상용 (전북대학교 의과대학 영상의학과) ;
  • 강경표 (전북대학교 의과대학 내과) ;
  • 김원 (전북대학교 의과대학 내과) ;
  • 박성광 (전북대학교 의과대학 내과)
  • Received : 2013.03.25
  • Accepted : 2013.06.25
  • Published : 2013.09.30

Abstract

Purpose : To evaluate the usefulness of in vivo magnetic resonance (MR) imaging for tracking intravenously injected superparamagnetic iron oxide (SPIO)-labeled human umbilical vein endothelial cells (HUVECs) in an acute renal failure (ARF) rat model. Materials and Methods: HUVECs were labeled with SPIO and poly-L-lysine (PLL) complex. Relaxation rates at 1.5-T MR, cell viability, and labeling stability were assessed. HUVECs were injected into the tail vein of ARF rats (labeled cells in 10 rats, unlabeled cells in 2 rats). Follow-up serial $T2^*$-weighted gradient-echo MR imaging was performed at 1, 3, 5 and 7 days after injection, and the MR findings were compared with histologic findings. Results: There was an average of $98.4{\pm}2.4%$ Prussian blue stain-positive cells after labeling with SPIOPLL complex. Relaxation rates ($R2^*$) of all cultured HUVECs at day 3 and 5 were not markedly decreased compared with that at day 1. The stability of SPIO in HUVECs was maintained during the proliferation of HUVECs in culture media. In the presence of left unilateral renal artery ischemia, $T2^*$-weighted MR imaging performed 1 day after the intravenous injection of labeled HUVECs revealed a significant signal intensity (SI) loss exclusively in the left renal outer medulla regions, but not in the right kidney. The MR imaging findings at days 3, 5 and 7 after intravenous injection of HUVECs showed a SI loss in the outer medulla regions of the ischemically injured kidney, but the SI progressively recovered with time and the right kidney did not have a significant change in SI in the same period. Upon histologic analysis, the SI loss on MR images was correspondent to the presence of Prussian blue stained cells, primarily in the renal outer medulla. Conclusion: MR imaging appears to be useful for in vivo monitoring of intravenously injected SPIO-labeled HUVECs in an ischemically injured rat kidney.

목적: 급성 신부전 쥐 모델에서 상자성 철 산화물 (superparamagnetic iron oxide(SPIO)로 표지한 인간탯줄혈관내피 세포를 자기공명영상으로 추적할 수 있는지 그 유용성을 평가하고자 하였다. 대상과 방법: 인간탯줄혈관내피 세포를 SPIO와 poly-L-lysine (PLL) 혼합물로 표지 하였다. SPIO 농도에 따라서 이완율, 세포 생존율, 표지 안정성을 SPIO 농도의 변화에 따라 평가하였다. 인간탯줄혈관내피 세포를 급성 신부전 쥐 모델에서 꼬리정맥을 통하여 주사하였다. MR을 이용한 추적 검사는 $T2^*$ 경사에코 MR 영상을 이용하였다. 1, 3, 5, 7일째 추적한 MR 영상 소견을 조직 소견과 서로 견주어 보았다. 결과: SPIO-PLL 혼합물을 표지 한 후 Prussian blue 염색에서 평균 $98.4{\pm}2.4%$ 세포가 양성반응을 보였다. 3일과 5일 후 측정한 이완율은 1일에 비해 큰 차이가 없었다. 인간탯줄혈관내피 세포를 SPIO로 표지 한 후 안정성이 유지됨을 알 수 있었다. 추적 MR 영상에서 급성신부전을 유도한 왼쪽 신장 외곽 신 수질에서 신호강도 소실을 보였으나 오른쪽은 정상이었다. 3, 5, 7일 후 촬영한 영상에서 왼쪽 신 수질에서 보인 신호강도 소실이 점차 사라졌으나 오른쪽 신장에서는 여전히 특별한 변화를 보이지 않았다. 조직학 검사에서도 MR 영상의 신호강도 소실이 Prussian blue 염색을 보인 부분과 일치하였다. 면역화학적 분석에서 신 수질에서 보인 세포들이 인간탯줄혈관내피 세포임을 확인하였다. 결론: MR 영상은 급성 신부전 치료의 한 방법인 세포 치료의 경우 세포 추적 검사에 유용하게 사용될 수 있음을 확인하였다.

Keywords

References

  1. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med 1996;334:1448-1460 https://doi.org/10.1056/NEJM199605303342207
  2. Rookmaaker MB, Verhaar MC, van Zonneveld AJ, Rabelink TJ. Progenitor cells in the kidney: biology and therapeutic perspectives. Kidney Int 2004;66:518-522 https://doi.org/10.1111/j.1523-1755.2004.761_10.x
  3. Brodsky SV, Yamamoto T, Tada T, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 2002;282:1140-1149
  4. Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 2005;40:504-513 https://doi.org/10.1097/01.rli.0000162925.26703.3a
  5. Frank JA, Anderson SA, Kalsih H, et al. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 2004;6:621-625 https://doi.org/10.1080/14653240410005267-1
  6. Zhang, Z, van den Bos EJ, Wielopolsk PA, et al. In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner. Magma 2005;18:175-185 https://doi.org/10.1007/s10334-005-0108-6
  7. Bulte JW, Zhang S, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96:15256-15261 https://doi.org/10.1073/pnas.96.26.15256
  8. Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol 2004;386:275-299 https://doi.org/10.1016/S0076-6879(04)86013-0
  9. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290-2293 https://doi.org/10.1161/01.CIR.0000070931.62772.4E
  10. Magnitsky S, Watson DJ, Walton RM, et al. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 2005;26:744-754 https://doi.org/10.1016/j.neuroimage.2005.02.029
  11. Hauger O, Frost EE, van Heeswijk R, et al. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 2006;238:200-210 https://doi.org/10.1148/radiol.2381041668
  12. Arbab AS, Yocum GT, Wilson LB, et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 2004; 3:24-32 https://doi.org/10.1162/153535004773861697
  13. Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Reson Med 2004;52:1214-1219 https://doi.org/10.1002/mrm.20220
  14. Ho C, Hitchens TK. A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ. Curr Pharm Biotechnol 2004;5:551-566. https://doi.org/10.2174/1389201043376535
  15. Kircher MF, Allport JR, Graves EE, et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic Tlymphocyte trafficking to tumors. Cancer Res 2003;63:6838-6846
  16. Sung MJ, Kim W, Ahn SY, et al. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res 2005;97:880-890 https://doi.org/10.1161/01.RES.0000186522.89544.4D
  17. Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229:838-846 https://doi.org/10.1148/radiol.2293021215
  18. Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004;233:781-789 https://doi.org/10.1148/radiol.2333031714
  19. Jung CW, Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 1995;13:661-674 https://doi.org/10.1016/0730-725X(95)00024-B
  20. Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 2003;90:518-524 https://doi.org/10.1002/jcb.10660
  21. Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed En 2006;34:23-38 https://doi.org/10.1007/s10439-005-9002-7
  22. Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 2001;281:887-899 https://doi.org/10.1152/ajprenal.2001.281.5.F887
  23. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 2002;62:1539-1549 https://doi.org/10.1046/j.1523-1755.2002.00631.x
  24. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5:434-438 https://doi.org/10.1038/7434
  25. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000;87:728-730 https://doi.org/10.1161/01.RES.87.9.728