DOI QR코드

DOI QR Code

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror

  • Vazquez-Zuniga, Luis A. (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
  • 투고 : 2013.02.07
  • 심사 : 2013.03.18
  • 발행 : 2013.04.25

초록

We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.

키워드

참고문헌

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). https://doi.org/10.1103/RevModPhys.78.1135
  2. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photonics 2, 219-225 (2008). https://doi.org/10.1038/nphoton.2008.47
  3. M. E. Fermann and I. Hartl, "Ultrafast fiber laser technology," IEEE J. Select. Topics Quantum Electron. 15, 191-206 (2009). https://doi.org/10.1109/JSTQE.2008.2010246
  4. J. Ye, H. Schnatz, and L. W. Hollberg, "Optical frequency combs: from frequency metrology to optical phase control," IEEE J. Select. Topics Quantum Electron. 9, 1041-1058 (2003). https://doi.org/10.1109/JSTQE.2003.819109
  5. G. Matthaus, B. Ortac, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, "Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser," Appl. Phys. Lett. 93, 261105-1-261105-3 (2008). https://doi.org/10.1063/1.3056118
  6. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, "Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 ${\mu}m$," Opt. Lett. 29, 2846-2848 (2004). https://doi.org/10.1364/OL.29.002846
  7. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Select. Topics Quantum Electron. 8, 506-520 (2002). https://doi.org/10.1109/JSTQE.2002.1016354
  8. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  9. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997). https://doi.org/10.1007/s003400050273
  10. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992). https://doi.org/10.1049/el:19921430
  11. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, "Mode-locking with cross-phase and self-phase modulation," Opt. Lett. 16, 502-504 (1991). https://doi.org/10.1364/OL.16.000502
  12. H. A. Haus, E. P. Ippen, and K. Tamura, "Additive-pulse modelocking in fiber lasers," IEEE J. Quantum Electron. 30, 200-208 (1994). https://doi.org/10.1109/3.272081
  13. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, "Additive-pulse-compression mode-locking of a neodymium fiber laser," Opt. Lett. 16, 244-246 (1991). https://doi.org/10.1364/OL.16.000244
  14. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, "320 fs soliton generation with passively mode-locked erbium fiber laser," Electron. Lett. 27, 730-732 (1991). https://doi.org/10.1049/el:19910454
  15. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid state low-loss intracavity saturable absorber for Nd-YLF lasers and antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992). https://doi.org/10.1364/OL.17.000505
  16. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
  17. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. D. Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Select. Topics Quantum Electron. 2, 435-453 (1996). https://doi.org/10.1109/2944.571743
  18. B. C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Riha, K. V. Reddy, A. T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg, and T. Mukai, "High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber," Opt. Lett. 20, 471-473 (1995). https://doi.org/10.1364/OL.20.000471
  19. E. A. Desouza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson, and D. J. Digiovanni, "Saturable absorber modelocked polarization-maintaining erbium-doped fiber laser," Electron. Lett. 29, 447-449 (1993). https://doi.org/10.1049/el:19930299
  20. M. Guina, N. Xiang, A. Vainionp, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, "Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers," Opt. Lett. 26, 1809-1811 (2001). https://doi.org/10.1364/OL.26.001809
  21. M. Guina, N. Xiang, and O. G. Okhotnikov, "Stretched-pulse fiber lasers based on semiconductor saturable absorbers," Appl. Phys. B 74, S193-S200 (2002). https://doi.org/10.1007/s00340-002-0872-1
  22. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, "Modelocked ytterbium fiber laser tunable in the 980-1070-nm spectral range," Opt. Lett. 28, 1522-1524 (2003). https://doi.org/10.1364/OL.28.001522
  23. M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, "Femtosecond neodymium-doped fiber laser operating in the 894-909-nm spectral range," IEEE Photon. Technol. Lett. 16, 1029-1031 (2004). https://doi.org/10.1109/LPT.2004.824951
  24. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, "Dissipative dispersion-managed soliton 2 $\mu m$ thulium/holmium fiber laser," Opt. Lett. 36, 609-611 (2011). https://doi.org/10.1364/OL.36.000609
  25. M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, "Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 24, 1074-1076 (1999). https://doi.org/10.1364/OL.24.001074
  26. A. Rutz, V. Liverini, R. Grange, M. Haiml, S. Schon, and U. Keller, "Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers," J. Cryst. Growth 301-302, 570-574 (2007). https://doi.org/10.1016/j.jcrysgro.2006.11.260
  27. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, and M. Pessa, "1.5 $\mu m$ monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser," Opt. Lett. 28, 364-366 (2003). https://doi.org/10.1364/OL.28.000364
  28. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, "A passively mode-locked fiber laser at 1.54 $\mu m$ with a fundamental repetition frequency reaching 2 GHz," Opt. Express 15, 13155-13166 (2007). https://doi.org/10.1364/OE.15.013155
  29. F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton modelocking with saturable absorbers," IEEE J. Select. Topics Quantum Electron. 2, 540-556 (1996). https://doi.org/10.1109/2944.571754
  30. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spuler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, "Practical low-noise stretched-pulse Yb3+-doped fiber laser," Opt. Lett. 27, 291-293 (2002). https://doi.org/10.1364/OL.27.000291
  31. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based ytterbium mode-locked fiber lasers," IEEE J. Select. Topics Quantum Electron. 10, 129-136 (2004). https://doi.org/10.1109/JSTQE.2003.822918
  32. S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, "Tunable modelocked bismuth-doped soliton fibre laser," Electron. Lett. 44, 1456-1458 (2008). https://doi.org/10.1049/el:20089831
  33. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996). https://doi.org/10.1364/OL.21.000881
  34. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, "Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector," IEEE J. Select. Topics Quantum Electron. 3, 1065-1075 (1997). https://doi.org/10.1109/2944.649542
  35. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, "Passively mode-locked $Er^{3+}$ fiber laser using a semiconductor nonlinear mirror," IEEE Photon. Technol. Lett. 5, 35-37 (1993). https://doi.org/10.1109/68.185052
  36. L. A. Vazquez-Zuniga, "Ultrafast high power fiber lasers and their applications," Ph. D. Thesis, University of Southampton (2012).
  37. L. A. Vazquez-Zuniga, H. Kim, and Y. Jeong, "Wavelengthtunable, picosecond fiber master-oscillator power amplifier source based on an erbium-doped large-core fiber," Opt. Commun. 294, 255-259 (2013). https://doi.org/10.1016/j.optcom.2012.12.050
  38. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. 22, 51-56 (2004). https://doi.org/10.1109/JLT.2003.822205
  39. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004). https://doi.org/10.1364/OL.29.001581
  40. H. Zhang, D. Y. Tang, L. M. Zhao, and Q. L. Bao, "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene," Opt. Express 17, 17630-17635 (2009). https://doi.org/10.1364/OE.17.017630
  41. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano 4, 803-810 (2010). https://doi.org/10.1021/nn901703e
  42. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, "Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion," Laser Phys. Lett. 7, 591-596 (2010). https://doi.org/10.1002/lapl.201010025
  43. H. A. Haus, "Parameter ranges for CW passive modelocking," IEEE J. Quantum Electron. 12, 169-176 (1976). https://doi.org/10.1109/JQE.1976.1069112
  44. BATOP Optoelectronics: http://www.batop.com/.
  45. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999). https://doi.org/10.1364/JOSAB.16.000046
  46. F. X. Kärtner, J. A. D. Au, and U. Keller, "Mode-locking with slow and fast saturable absorbers-What's the difference?" IEEE J. Select. Topics Quantum Electron. 4, 159-168 (1998). https://doi.org/10.1109/2944.686719
  47. S. M. J. Kelly, K. Smith, K. J. Blow, and N. J. Doran, "Average soliton dynamics of a high-gain erbium fiber laser," Opt. Lett. 16, 1337-1339 (1991). https://doi.org/10.1364/OL.16.001337
  48. D. V. D. Linde, "Characterization of the noise in continuously operating modelocked lasers," Appl. Phys. B 39, 201-217 (1986). https://doi.org/10.1007/BF00697487
  49. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, "A semiconductorbased 10-GHz optical comb source with sub 3-fs shot-noiselimited timing jitter and similar to 500-Hz comb linewidth," IEEE Photon. Technol. Lett. 22, 431-433 (2010). https://doi.org/10.1109/LPT.2010.2040980
  50. Y. S. Liu, J. G. Zhang, G. F. Chen, W. Zhao, and J. Bai, "Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability," J. Opt. 12, 0955204 (2010).

피인용 문헌

  1. W-type highly erbium-doped active soft-glass fibre with high nonlinearity vol.52, pp.12, 2016, https://doi.org/10.1049/el.2016.0140
  2. MoS2 nano-flake doped polyvinyl alcohol enabling polarized soliton mode-locking of a fiber laser vol.4, pp.40, 2016, https://doi.org/10.1039/C6TC02623K
  3. Mode-locking of Er-doped fiber laser using a multilayer MoS_2 thin film as a saturable absorber in both anomalous and normal dispersion regimes vol.22, pp.19, 2014, https://doi.org/10.1364/OE.22.023732
  4. Influences of the Filter Effect on Pulse Splitting in Passively Mode-Locked Fiber Laser with Positive Dispersion Cavity vol.19, pp.2, 2015, https://doi.org/10.3807/JOSK.2015.19.2.130
  5. Influence of Diverse Atmospheric Conditions on Optical Properties of a Pulse Laser in a Time-of-Flight Laser Range Finder vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.001
  6. Combinatorial Study of Supercontinuum Generation Dynamics in Photonic Crystal Fibers Pumped by Ultrafast Fiber Lasers vol.52, pp.6, 2016, https://doi.org/10.1109/JQE.2016.2551360
  7. Femtosecond Soliton Pulse Generation Using Evanescent Field Interaction Through Tungsten Disulfide (WS 2) Film vol.33, pp.17, 2015, https://doi.org/10.1109/JLT.2015.2443113
  8. Photodeposition of SWCNTs onto the optical fiber end to assemble a Q-switched Er 3+ -doped fiber laser vol.91, 2017, https://doi.org/10.1016/j.optlastec.2016.12.007
  9. Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) vol.27, pp.1, 2016, https://doi.org/10.3807/KJOP.2016.27.1.001