DOI QR코드

DOI QR Code

A Novelty Detection Algorithm for Multiple Normal Classes : Application to TFT-LCD Processes

다중 정상 하에서 단일 클래스 분류기법을 이용한 이상치 탐지 : TFT-LCD 공정 사례

  • Joo, Tae Woo (School of Industrial Management Engineering, Korea University) ;
  • Kim, Seoung Bum (School of Industrial Management Engineering, Korea University)
  • 주태우 (고려대학교 산업경영공학과) ;
  • 김성범 (고려대학교 산업경영공학과)
  • Received : 2012.11.15
  • Accepted : 2013.03.06
  • Published : 2013.04.15

Abstract

Novelty detection (ND) is an effective technique that can be used to determine whether a future observation is normal or not. In the present study we propose a novelty detection algorithm that can handle a situation where the distributions of target (normal) observations are inhomogeneous. A simulation study and a real case with the TFT-LCD process demonstrated the effectiveness and usefulness of the proposed algorithm.

Keywords

References

  1. Barnett, V. and Lewis, T. (1994), Outliers in Statistical Data, Wiley and Sons, California, USA.
  2. Bradley, A. P. (1997), The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms, Pattern Recognition, 30(7), 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
  3. Clifton, D., Tarassenko, L., Sage, C., and Sundaram, S. (2008), Condition Monitoring of Manufacturing Processes, In : Proceedings of Condition Monitoring, Edinburgh, UK, 273-279.
  4. Clifton, D. A., Hugueny, S., and Tarassenko, L. (2011), Novelty Detection with Multivariate Extreme Value Statistics, Journal of Signal Processing Systems, 65(3), 371-389. https://doi.org/10.1007/s11265-010-0513-6
  5. Duda, R. and Hart, P. (1973), Pattern Classification and Scene Analysis, John Wiley and Sons, New York, USA.
  6. Efron, B. and Tibshirani, R. J. (1994), An Introduction to the Bootstrap, Chapman and Hall/CRC, London, UK.
  7. Franklin, S., Thomas, S., and Brodeur, M. (2000), Robust Multivariate Outlier Detection Using Mahalanobis' Distance and Modified Stahel-Donoho Estimators, In: Proceedings of the Second International Conference on Establishment Surveys, Buffalo, New York, 697-706.
  8. Hawkins, D. M. (1980), Identification of Outliers, Chapman and Hall, London, UK.
  9. Issa, H. and Miklos A, V. (2011), Application of Anomaly Detection Techniques to Identify Fraudulent Refunds, Social Science Research Network.
  10. Kang, P. and Cho, S. (2009), A Hybrid Novelty Score and its Use in Keystroke Dynamics-Based User Authentication, Pattern Recognition, 42 (11), 3115-3127. https://doi.org/10.1016/j.patcog.2009.04.009
  11. Kang, P. S., Lee, S. K., Kim, D. I., Doh, S. Y. and Cho, S. Z. (2012), Estimating the Reliability of Virtual Metrology Predictions in Semiconductor Manufacturing : A Novelty Detection-Based Approach, Journal of the Korean Institute of Industrial Engineers, 38(1), 45-56. https://doi.org/10.7232/JKIIE.2012.38.1.046
  12. Kim, S. B., Sukchotrat, T., and Park, S. K. (2011), A Nonparametric Fault Isolation Approach through One-Class Classification Algorithms, IIE Transactions, 43(7), 505-517. https://doi.org/10.1080/0740817X.2010.523769
  13. Koppel, M. and Schler, J. (2004), Authorship Verification as a One-Class Classification Problem, In : Proceedings of 21st International Conference on Machine Learnin, New York, 489-495.
  14. Kumar, V., Srivastava, J., and Lazarevic, A. (2005), Managing Cyber Threats : Issues, Approaches and Challenges, Springer, USA.
  15. Lim, S. G. and Hong, K. H. (2009), Digital Logic Circuit, Han Bit Media, Korea.
  16. Liu, Y. H., Huang, Y. K., and Lee, M. J. (2008), Automatic Inline Defect Detection for a Thin Film Transistor-Liquid Crystal Display Array Process using Locally Linear Embedding and Support Vector Data Description, Measurement Science and Technology, 19(9), 1-16.
  17. Liu, Y. H., Liu, Y. C., and Chen, Y. Z. (2011), High-Speed Inline Defect Detection for TFT-LCD Array Process using a Novel Support Vector Data Description, Expert Systems with Applications, 38(5), 6222-6231. https://doi.org/10.1016/j.eswa.2010.11.046
  18. Manevitz, L. M. and Yousef, M. (2001), One-Class Svms for Document Classification. Journal of Machine Learning Research, 2, 139-154.
  19. Mano, M. M. and Ciletti, M. D. (2007), Digital Design, 4th edition, Prentice Hall, USA.
  20. Montgomery, D. C. (2005), Introduction to Statistical Quality Control, 5th edition, John Wiley and Sons, New York, USA.
  21. Sanchez-Yanez, R. E., Kurmyshev, E. V., and Fernandex, A. (2003), One- Class Texture Classifier in the CCR Feature Space, Pattern Recognition Letters, 24, 1503-1511. https://doi.org/10.1016/S0167-8655(02)00389-6
  22. Scholkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001), Estimating the Support of a High-Dimensional Distribution, Neural Computation, 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965
  23. Shin, H. J. (2010), A Fault Diagnosis Methodology for Module Process of TFT-LCD Manufacture Using Support Vector Machines, Journal of the Semiconductor and Display Technology, 9(4), 93-97, Korea.
  24. Tarassenko, L., Hann, A. and Young, D. (2006), Integrated Monitoring and Analysis for Early Warning of Patient Deterioration, British Journal of Anaesthesia, 97(1), 64-68. https://doi.org/10.1093/bja/ael113
  25. Tax, D. M. J. (2001), One-Class Classification : Concept-Learning in the Absence of Counter-Examples, Ph.D. thesis, Delf University of Technology, The Netherlands.
  26. Thiprungsri, S. and Miklos A, V. (2011), Cluster Analysis for Anomaly Detection in Accounting Data, The International Journal of Digital Accounting Research, 11(17), 69-84.