DOI QR코드

DOI QR Code

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo (Department of Chemical and Biomolecular Engineering, Center for Energy and Environment Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • In, Su-Il (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Jong-Duk (Department of Chemical and Biomolecular Engineering, Center for Energy and Environment Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2013.03.04
  • Accepted : 2013.03.24
  • Published : 2013.03.30

Abstract

Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.

Keywords

References

  1. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, Nat. Mater. 1, 366 (2005).
  2. J. W. Lee, J. M. Ko and J.-D. Kim, J. Phys. Chem. C 115, 10445 (2011). https://doi.org/10.1021/jp205166j
  3. J. W. Lee. T. Ahn, J. H. Kim, J.M. Ko and J.-D. Kim, Electrochim. Acta 56, 4849 (2011). https://doi.org/10.1016/j.electacta.2011.02.116
  4. R. Y. Song, J. H. Park, S. R. Sivakkumar, S. H. Kim, J. M. Ko, D. Y. Park, S. M. Jo and D. Y. Kim, J. Power Sources 166, 297 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.093
  5. J. N. Hu, X. L. Ruan and Y. P. Chen, Nano Lett. 9, 2730 (2009). https://doi.org/10.1021/nl901231s
  6. C. Li, Z. Li, H. Zhu, K. Wang, J. Wei, X. Li, P. Sun, H. Zhang and D. Wu, J. Phys. Chem. C 114, 14008 (2010). https://doi.org/10.1021/jp1041487
  7. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen and H. Zhang, ACS Nano 5, 5038 (2011). https://doi.org/10.1021/nn201118c
  8. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  9. J. W. Lee, T. Ahn, S. Devaraj, J. M. Ko and J.-D. Kim, Chem. Commun. 47, 6305 (2011). https://doi.org/10.1039/c1cc11566a
  10. L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, B. Chen and J. Jin, Chem. Commun. 47, 3556 (2011). https://doi.org/10.1039/c0cc05420h
  11. S. Chen, J. Zhu and X. Wang, J. Phys. Chem. C 114, 11829 (2010). https://doi.org/10.1021/jp1048474
  12. Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li and H. M. Cheng, Adv. Funct. Mater. 20, 3595 (2010). https://doi.org/10.1002/adfm.201001054
  13. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang and F. Wei, Carbon 48, 3825 (2010). https://doi.org/10.1016/j.carbon.2010.06.047
  14. H. Yan, T. Wei, W. Qiao, B. Chao, Q. Zhao, L. J. Zhang and Z. Fan. Electrochim. Acta 55, 6973 (2010). https://doi.org/10.1016/j.electacta.2010.06.081
  15. A. I. Khan and D. O'Hare, J. Mater. Chem. 12, 3191 (2002). https://doi.org/10.1039/b204076j
  16. C. G. Sivia, Y. Bouizi, V. Fones and H. Garcia, J. Am. Chem. Soc. 131,13833 (2009). https://doi.org/10.1021/ja905467v
  17. J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong and J. Protier, J. Am. Chem. Soc. 121, 1399 (1999). https://doi.org/10.1021/ja981823f
  18. Y. Wang, W. Yang, C. Chen and D. G. Evans, J. Power Sources 184, 682 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.017
  19. M. A. Woo, M. S. Song, T. W. Kim. I. Y. Kim, J. Y. Ju, Y. S. Lee, S. J. Kim, J. H. Choy and S. J. Hwang, J. Mater. Chem. 21, 4286 (2011). https://doi.org/10.1039/c0jm03430d
  20. W. S. Hummers and R. E.Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  21. Z. Liu, R. Ma, Y. Ebina, N. Iyi, K. Takada and T. Sasaki, Langmuir 23, 861 (2007). https://doi.org/10.1021/la062345m
  22. Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong and K. P. Loh, Chem. Mater. 21, 2950 (2009). https://doi.org/10.1021/cm9006603
  23. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  24. P. G. Ren, D. X. Yan, X. Ji, T. Chen and Z. M. Li, Nanotechnology 22, 055705 (2011). https://doi.org/10.1088/0957-4484/22/5/055705
  25. C. Nethravathi and M. Rajamathi, Carbon 46, 1994 (2008). https://doi.org/10.1016/j.carbon.2008.08.013
  26. J. W. Lee, W. C. Choi and J.-D. Kim, CrystEngComm 12, 3249 (2010). https://doi.org/10.1039/c002296a
  27. Z. Liu, R. Ma, M. Osada, K. Takada and T. Sasaki, J. Am. Chem. Soc. 127, 13869 (2005). https://doi.org/10.1021/ja0523338
  28. M. Wei, X. Xu, X. Wang, F. Li, H. Zhang, Y. Lu, M. Pu, D. G. Evans and X. Duan, Eur. J. Inorg. Chem. 14, 2831 (2006).

Cited by

  1. Atomic layer deposition of ultrathin layered TiO2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells vol.25, pp.2, 2016, https://doi.org/10.1016/j.jechem.2016.01.010