References
- Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ.
- Ahuja, R. K. and Orlin, J. B. (2000), A faster algorithm for the inverse spanning tree problem, Journal of Algorithms, 34(1), 177-193. https://doi.org/10.1006/jagm.1999.1052
- Chen, X. (2011), American option pricing formula for uncertain financial market, International Journal of Operations Research, 8(2), 27-32.
- Farago, A., Szentesi, A., and Szviatovszki, B. (2003), Inverse optimization in high-speed networks, Discrete Applied Mathematics, 129(1), 83-98. https://doi.org/10.1016/S0166-218X(02)00235-4
-
Guan, X. and Zhang, J. (2007), Inverse constrained bottleneck problems under weighted
$l_{{\infty}}$ norm, Computers and Operations Research, 34(11), 3243-3254. https://doi.org/10.1016/j.cor.2005.12.003 - He, Y., Zhang, B., and Yao, E. (2005), Weighted inverse minimum spanning tree problems under Hamming distance, Journal of Combinatorial Optimization, 9(1), 91-100. https://doi.org/10.1007/s10878-005-5486-1
- Kershenbaum, A. (1993), Telecommunication Network Design Algorithms, McGraw-Hill, New York, NY.
- Li, S. and Peng, J. (2012), A new approach to risk comparison via uncertain measure, Industrial Engineering & Management Systems, 11(2), 176-182. https://doi.org/10.7232/iems.2012.11.2.176
- Liu, B. (2007), Uncertainty Theory (2nd ed.), Springer-Verlag, Berlin.
- Liu, B. (2009), Some research problems in uncertainty theory, Journal of Uncertain Systems, 3(1), 3-10.
- Liu, B. (2010), Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer- Verlag, Berlin.
- Peng, J. and Li, S. (2011), Spanning tree problem of uncertain network, Proceedings of the 3rd International Conference on Computer Design and Applications, Xi'an, Shaanxi, China.
- Peng, Z. and Iwamura, K. (2010), A sufficient and necessary condition of uncertainty distribution, Journal of Interdisciplinary Mathematics, 13(3), 277-285. https://doi.org/10.1080/09720502.2010.10700701
- Sheng, Y. and Yao K. (2012), Fixed charge transportation problem and its uncertain programming model, Industrial Engineering and Management Systems, 11(2), 183-187. https://doi.org/10.7232/iems.2012.11.2.183
- Sokkalingam, P. T., Ahuja, R. K., and Orlin, J. B. (1999), Solving inverse spanning tree problems through network flow techniques, Operations Research, 47(2), 291-298. https://doi.org/10.1287/opre.47.2.291
-
Wang, Q., Yang, X., and Zhang, J. (2006), A class of inverse dominant problems under weighted
$l_{{\infty}}$ norm and an improved complexity bound for Radzik's algorithm, Journal of Global Optimization, 34(4), 551-567. https://doi.org/10.1007/s10898-005-1649-y - Xu, X. and Zhu, Y. (2012), Uncertain bang-bang control for continuous time model, Cybernetics and Systems, 43(6), 515-527. https://doi.org/10.1080/01969722.2012.707574
-
Yang, X. and Zhang, J. (2007), Some inverse min-max network problems under weighted l1 and
$l_{{\infty}}$ norms with bound constraints on changes, Journal of Combinatorial Optimization, 13(2), 123-135. - Zhang, B., Zhang, J., and He, Y. (2006), Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance, Journal of Global Optimization, 34(3), 467-474. https://doi.org/10.1007/s10898-005-6470-0
- Zhang, J., Liu. Z., and Ma, Z. (1996), On the inverse problem of minimum spanning tree with partition constraints, Mathematical Methods of Operations Research, 44(2), 171-187. https://doi.org/10.1007/BF01194328
- Zhang, J. and Zhou, J. (2006), Models and hybrid algorithms for inverse minimum spanning tree problem with stochastic edge weights, World Journal of Modelling and Simulation, 2(5), 297-311.
- Zhou, C. and Peng, J. (2011), Models and algorithm ofmaximum flow problem in uncertain network, Proceedingsof the 3rd International Conference on-Artificial Intelligence and Computational Intelligence,Taiyuan, Shanxi, China, 101-109.
Cited by
- Multi-objective optimization in uncertain random environments vol.13, pp.4, 2014, https://doi.org/10.1007/s10700-014-9183-3
- Uncertain Quadratic Minimum Spanning Tree Problem pp.17962021, 2014, https://doi.org/10.12720/jcm.9.5.385-390
- Entropy of Uncertain Random Variables wi h Application to Minimum Spanning Tree Problem vol.25, pp.04, 2017, https://doi.org/10.1142/S0218488517500210
- An interactive satisficing approach for multi-objective optimization with uncertain parameters vol.28, pp.3, 2017, https://doi.org/10.1007/s10845-014-0998-0
- Minimum spanning tree problem of uncertain random network vol.28, pp.3, 2017, https://doi.org/10.1007/s10845-014-1015-3
- Uncertain risk aversion vol.28, pp.3, 2017, https://doi.org/10.1007/s10845-014-1013-5
- The covariance of uncertain variables: definition and calculation formulae pp.1573-2908, 2017, https://doi.org/10.1007/s10700-017-9270-3
- Path Optimality Conditions for Minimum Spanning Tree Problem with Uncertain Edge Weights vol.23, pp.1, 2013, https://doi.org/10.1142/s0218488515500038
- A new definition of cross entropy for uncertain random variables and its application vol.35, pp.1, 2013, https://doi.org/10.3233/jifs-18268