DOI QR코드

DOI QR Code

청목노상(Morus alba cv. Cheongmoknosang) callus의 배양조건에 따른 Helicobacter pylori 억제물질의 생산

Production of Inhibitory Compounds against Helicobacter pylori by Culture Condition of Morus alba cv. Cheongmoknosang Callus

  • 조영제 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 차원섭 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 강선애 (경북대학교 응용생명과학부) ;
  • 안봉전 (대구한의대학교 화장품약리학과) ;
  • 안동현 (부경대학교 식품공학과/식품연구소) ;
  • 김명욱 (경북해양바이오산업연구원) ;
  • 채정우 (경기도산림환경연구소)
  • Cho, Young-Je (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Cha, Won-Seup (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Kang, Sun-Ae (School of Applied Bioscience, Kyungpook National University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology, Institute of Food Science, Pukyong National University) ;
  • Kim, Myung-Uk (Gyungbuk Institute for Marine Bio-Industry) ;
  • Chae, Jung-Woo (Gyeonggi-do Forest Environment Research Institute)
  • 투고 : 2012.08.09
  • 심사 : 2013.02.11
  • 발행 : 2013.03.30

초록

Helicobacter pylori 억제효과가 우수한 청목노상의 캘러스 배양을 위한 최적조건은 MS 고체배지에서 $27^{\circ}C$에서 20일간 배양하였을 때 6.4 mm의 크기로 가장 크게 자랐으며, 청목노상의 callus 형성에 미치는 생장조절제로는 NAA, 2,4-D, BA 및 kinetin 등을 2 mg/l의 농도로 첨가하여 $27^{\circ}C$에서 20일간 배양했을 때 높은 캘러스 성장률을 확인 할 수 있었고, 생장조절제의 혼합처리구가 단독처리구 보다 캘러스 형성율이 높은 것을 확인 할 수 있다. 따라서 본 연구에 사용된 청목노상 품종의 평판기내 배양을 위한 direct callogenesis의 최적 조건은 생장호르몬으로 2,4-D/NAA를 2 mg/l의 농도로 혼합 처리하여 $27^{\circ}C$에서 20일간 배양이 최적조건이었다. 청목노상 callus로부터 Helicobacter pylori 억제물질의 대량생산을 위한 방법인 biomass를 위한 bioreactor배양은 MS 액체배지에 호르몬으로 2,4-D와 BA를 각각 1 mg/l의 농도로 처리하여 20일간 배양하였을 때가 최적조건이었다. 최적조건에서 배양한 callus 추출물의 Helicobacter pylori 에 대한 억제효과는 16 mm의 clear zone으로 가장 높은 저해율을 확인할 수 있었다.

The optimal condition for Morus alba cv was an MS culture medium at $27^{\circ}C$ for 20 days. Cheongmoknosang callus showed inhibitory activity against Helicobacter pylori at 1.05 g of wet weight of the cultured callus. The callus formation of Morus alba cv. Cheongmoknosang was influenced by naphthalene acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D), 6-benzylaminopurine (BA) and kinetin at concentrations of 2 mg/l. The growth rate of callus was higher than it was when these hormones were mixed with a single hormone. Thus, the optimal condition for direct callogenesis was to incubate with mixture (2,4-D/NAA) of 2 mg/l concentration at $27^{\circ}C$ for 20 days. Moreover, the optimal culture condition of the biomass in the mass production of inhibitory compounds against Helicobacter pylori from Morus alba cv. Cheongmoknosang callus was to incubate in an MS broth (each concentration 1 mg/l of 2,4-D and BA). When Morus alba cv. Cheongmoknosang callus were incubated for 20 days in a bioreactor, Helicobacter pylori inhibition of callus extracts was the highest at a clear zone of 16 mm.

키워드

참고문헌

  1. Ahn, D. 2000. Illustrated book of Korea medicinal herbs. pp. 773, Kyohak press. Seoul.
  2. Asano, N., Tioka E., Kizu H. and Matsui, K. 1994. Sugars with nitrogen in the ring isolated from the Morus Bombysis. Carbohydr Res 253, 235-245. https://doi.org/10.1016/0008-6215(94)80068-5
  3. Bae, K. H. 2000. Medicinal plant of Korea. pp. 73, Kyohak press. Seoul.
  4. Basnet, P., Kodota, S., Terashima, S., Shimizu, M. and Namba, T. 1993. Two new 2-arylbenzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insignis. Chem Pharm Bull 41, 1238-1243. https://doi.org/10.1248/cpb.41.1238
  5. Chen, F., Nakashima, N., Kimura, I. and Kimura, M. 1995. Hypoglycemic activity and mechanisms of extracts from mulberry leaves (Folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Akugaku Zasshi 115, 476-482.
  6. Cho, J. H. and Byeon, J. H. 2011. Establishment of callus induction and plant regeneration system from mature seeds of Miscanthus sinensis. Korean J Plant Res 24, 628-635. https://doi.org/10.7732/kjpr.2011.24.5.628
  7. Cho, Y. J. and An, B. J. 2008. Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide- stimulated raw dells. J Korean Soc Appl Biol Chem 51, 44-48.
  8. Cho, Y. J., Ju, I. S., Kim, B. O., Kim, J. H., Lee, B. G., An, B. J. and Choo, J. W. 2007. The antimicrobial activity against Helicobacter pylori and antixoidant effect from the extracts of Mulberry leaves (Morus alba L.). J Korean Soc Appl Biol Chem 50, 334-343.
  9. Cho, Y. J., Lee, K. H., Cha, W. S., Ju, I. S., Yoon, D. H., Ahn, B. J., Lee, S. H., Kim, M. W., Kim, J. H. and Chun, S. S. 2009. Purification and identification of inhibitory compounds from Cheongmoknosang Mulberry leaves (Morus Alba L.) on Helicobacter pylori. J Korea Soc Appl Biol Chem 52, 65-69. https://doi.org/10.3839/jabc.2009.012
  10. Higasi, G. S. 2000. Appraisement of antioxidative activity from vegetables. Jpn J Food Ind 57, 56-64.
  11. Jin, H. J., Lee, H. Y., Kim, D. J., Heo, M. Y. and Lee, J. H. 2005. Genotoxicity and mutagenicity of the extracts of Morus alba L. Korean J Medicinal Crop Sci 13, 217-225.
  12. Kang, C. H., Han, B. S., Han, S. G., Ko, S. H. and Song, Y. J. 2011. Selection of suitable varieties of carnation (Dianthus caryophyllus L.) and optimization of culture conditions for efficient tissue culture. Korea J Plant Res 24, 121-129. https://doi.org/10.7732/kjpr.2011.24.2.121
  13. Kim, M. W., Roh, J. S. and Chung, K. S. 1996. Production of secondary metabolites in suspension culture of Morus alba L. Current Biochem Eng II, 73-78.
  14. Kimura, M., Chen, F., Nakashima, N., Kimura, I., Asano, N. and Koya, S. 1995. Antihyperglycemic effects of N-containing sugars derived from Mulberry leaves in STZ-induced diabetic mice. J Trad Med 12, 214-220.
  15. Koo, W. R., Cho, J. H., Park, C. G., Ahn, Y. S. and Park, C. B. 2011. Effect of plant growth regulators on in vitro cultured Atractylodes hybrid 'Dacchul' (A. macrocephala x A. japonica). Korean J Plant Res 24, 591-598. https://doi.org/10.7732/kjpr.2011.24.5.591
  16. Lee, J. S., Choi, M. H. and Jung, S. H. 1995. Blood glucose lowering effects of Mori Folium. Yakhak Hoeji 39, 367-372.
  17. Murashige, T. and Skoog, T. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473-492. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Park, C. H., Seong, N. S., Paek, K. Y. and Lee, C. H. 1998. Micropropagation through Callus Culture in Chinese Foxglove (Rehmannia glutinos). Korean J Plant Tissue Culture 25, 171-175.
  19. Romero, A. I., Lamuela, R. M., Andres, C. and Torre, M. C. 2001. Method for the quntitative extraction of resveratrol and piceid isomers in grape berry skins. J Agric Food Chem 49, 210-215. https://doi.org/10.1021/jf000745o
  20. Yoon, D. H., Cha, W. S., Lee, S. H., Ahn, B. J., Kim, J. H., Chun, S. S., Bae, J. H. and Cho, Y. J. 2010. Purification of identification of inhibitory compounds on Helicobacter pylori from Cheongmoknosang callus for biomass. J Life Sci 20, 374-380. https://doi.org/10.5352/JLS.2010.20.3.374