DOI QR코드

DOI QR Code

후성유전과 알레르기 질환

Epigenetics in Allergic Diseases

  • 장안수 (순천향대학교 부천병원 호흡기알레르기내과)
  • Jang, An-Soo (Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital)
  • 발행 : 2013.09.01

초록

The epigenetics is the study of changes in gene expression or celluar phenotype caused by mechanisms other than changes in the underlying DNA sequence. Epigenetic regulation in asthma and allergic diseases is an interesting area that has obtained a great deal of scientific concern in recent years. Allergic diseases such as asthma and allergic rhinitis in early life are one of the important indicators that the developing immune system is vulnerable to biologic and environmental pollutants. The epigenetic studies are likely to provide clear and deep understandings into how the environment can be modified to drive immune development and change the allergic disease phenotypes. This review includes 1) definition of epigenetics 2) regulation of epigenetics 3) characterization of environmental asthma and allergic diseases triggers that induce epigenetic changes.

키워드

참고문헌

  1. Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med 2011;183:1295-1301. https://doi.org/10.1164/rccm.201010-1579PP
  2. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005;102:10604-10609. https://doi.org/10.1073/pnas.0500398102
  3. Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 2008;299:2877-2883. https://doi.org/10.1001/jama.299.24.2877
  4. Ho SM. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010;126:453-465. https://doi.org/10.1016/j.jaci.2010.07.030
  5. Salam MT, Zhang Y, Begum K. Epigenetics and childhood asthma: current evidence and future research directions. Epigenomics 2012;4:415-429. https://doi.org/10.2217/epi.12.32
  6. Latham KE, Sapienza C, Engel N. The epigenetic lorax: gene-environment interactions in human health. Epigenomics 2012;4:383-402. https://doi.org/10.2217/epi.12.31
  7. Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie 2012;94:2231-2241. https://doi.org/10.1016/j.biochi.2012.07.017
  8. Cortessis VK, Thomas DC, Levine AJ, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 2012;131: 1565-1589. https://doi.org/10.1007/s00439-012-1189-8
  9. Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep 2012;12:211-220. https://doi.org/10.1007/s11882-012-0257-4
  10. Lobanenkov V, Loukinov D, Pugacheva E. Environmental epigenomics and disease susceptibility: keystone symposia on molecular and cellular biology: the Grove Park Hotel & Spa, Ashville, NC, USA, 27 March-1 April 2011. Epigenomics 2011; 3:261-266. https://doi.org/10.2217/epi.11.25
  11. Pascual M, Suzuki M, Isidoro-Garcia M, et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics 2011;6:1131-1137. https://doi.org/10.4161/epi.6.9.16061
  12. Lee SH, Park JS, Park CS. The search for genetic variants and epigenetics related to asthma. Allergy Asthma Immunol Res 2011;3:236-244. https://doi.org/10.4168/aair.2011.3.4.236
  13. Koppelman GH, Nawijn MC. Recent advances in the epigenetics and genomics of asthma. Curr Opin Allergy Clin Immunol 2011;11:414-419. https://doi.org/10.1097/ACI.0b013e32834a9573
  14. Sakao S, Tatsumi K. The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology 2011;16:1056-1063. https://doi.org/10.1111/j.1440-1843.2011.02032.x
  15. Cookson WO, Moffatt MF. Genetics of complex airway disease. Proc Am Thorac Soc 2011;8:149-153. https://doi.org/10.1513/pats.201101-003MS
  16. North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease. Ann Allergy Asthma Immunol 2011;106:355-361. https://doi.org/10.1016/j.anai.2011.02.008
  17. Durham AL, Wiegman C, Adcock IM. Epigenetics of asthma. Biochim Biophys Acta 2011;1810:1103-1109. https://doi.org/10.1016/j.bbagen.2011.03.006
  18. Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011;139:640-647. https://doi.org/10.1378/chest.10-1800
  19. Kuo CH, Ko YC, Yang SN, et al. Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation. J Mol Med (Berl) 2011;89:29-41. https://doi.org/10.1007/s00109-010-0694-2
  20. Kabesch M, Michel S, Tost J. Epigenetic mechanisms and the relationship to childhood asthma. Eur Respir J 2010;36: 950-961. https://doi.org/10.1183/09031936.00019310
  21. Ito K, Caramori G, Lim S, et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 2002;166:392-396. https://doi.org/10.1164/rccm.2110060
  22. Kuriakose JS, Miller RL. Environmental epigenetics and allergic diseases: recent advances. Clin Exp Allergy 2010;40: 1602-1610. https://doi.org/10.1111/j.1365-2222.2010.03599.x
  23. Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2010;2:523-537. https://doi.org/10.2217/epi.10.27
  24. Schwartz DA. Epigenetics and environmental lung disease. Proc Am Thorac Soc 2010;7:123-125. https://doi.org/10.1513/pats.200908-084RM
  25. Shaheen SO, Adcock IM. The developmental origins of asthma: does epigenetics hold the key? Am J Respir Crit Care Med 2009;180:690-691. https://doi.org/10.1164/rccm.200906-0893ED
  26. Bowman RV, Wright CM, Davidson MR, Francis SM, Yang IA, Fong KM. Epigenomic targets for the treatment of respiratory disease. Expert Opin Ther Targets 2009;13:625-640. https://doi.org/10.1517/14728220902926119
  27. Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 2009;49:243-263. https://doi.org/10.1146/annurev-pharmtox-061008-103102
  28. Miller RL, Ho SM. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 2008;177:567-573. https://doi.org/10.1164/rccm.200710-1511PP
  29. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 2008;121:57-63.e3. https://doi.org/10.1016/j.jaci.2007.09.004
  30. Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics. Ann Med 2006;38:530-544. https://doi.org/10.1080/07853890600989211
  31. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987;196:261-282. https://doi.org/10.1016/0022-2836(87)90689-9
  32. Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008;9:831-842. https://doi.org/10.1038/nrg2455
  33. Lee RC, Feinbaum RL, Ambros V. The C: elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-854. https://doi.org/10.1016/0092-8674(93)90529-Y
  34. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8:93-103.
  35. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-714. https://doi.org/10.1038/nrg2634
  36. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Altered epigenetic regulation and increasing severity of bronchial hyperresponsiveness in atopic asthmatic children. J Allergy Clin Immunol 2009;124:1116-1118. https://doi.org/10.1016/j.jaci.2009.08.033
  37. Tykocinski LO, Hajkova P, Chang HD, et al. A critical control element for interleukin-4 memory expression in T helper lymphocytes. J Biol Chem 2005;280:28177-28185. https://doi.org/10.1074/jbc.M502038200
  38. Lee DU, Agarwal S, Rao A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 2002;16:649-660. https://doi.org/10.1016/S1074-7613(02)00314-X
  39. Fields PE, Kim ST, Flavell RA. Cutting edge: changes in histone acetylation at the IL-4 and IFN-gamma loci accompany Th1/Th2 differentiation. J Immunol 2002;169:647-650. https://doi.org/10.4049/jimmunol.169.2.647
  40. Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009;30:155-167. https://doi.org/10.1016/j.immuni.2008.12.009
  41. Jones B, Chen J. Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. EMBO J 2006;25:2443-2452. https://doi.org/10.1038/sj.emboj.7601148
  42. Young HA, Ghosh P, Ye J, et al. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J Immunol 1994;153:3603-3610.
  43. Doherty SP, Grabowski J, Hoffman C, Ng SP, Zelikoff JT. Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers 2009;14(Suppl 1): 97-101. https://doi.org/10.1080/13547500902965898
  44. Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 2001;15:1110-1112. https://doi.org/10.1096/fj.00-0432fje
  45. Anttila S, Hakkola J, Tuominen P, et al. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res 2003;63:8623-8628.
  46. Kim DH, Kim JS, Ji YI, et al. Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 2003;63:3743-3746.
  47. Kim JS, Kim H, Shim YM, Han J, Park J, Kim DH. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis 2004;25:2165-2171. https://doi.org/10.1093/carcin/bgh217
  48. Launay JM, Del Pino M, Chironi G, et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 2009;4:e7959. https://doi.org/10.1371/journal.pone.0007959
  49. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 2009;180:462-467. https://doi.org/10.1164/rccm.200901-0135OC
  50. Liu J, Ballaney M, Al-alem U, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008; 102:76-81. https://doi.org/10.1093/toxsci/kfm290
  51. Gilmour PS, Rahman I, Donaldson K, MacNee W. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol 2003;284:L533-540. https://doi.org/10.1152/ajplung.00277.2002
  52. Hollingsworth JW, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008;118:3462-3469.
  53. Håberg SE, London SJ, Stigum H, Nafstad P, Nystad W. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 2009;94:180-184. https://doi.org/10.1136/adc.2008.142448
  54. Gorman S, McGlade JP, Lambert MJ, Strickland DH, Thomas JA, Hart PH. UV exposure and protection against allergic airways disease. Photochem Photobiol Sci 2010;9:571-577. https://doi.org/10.1039/b9pp00136k
  55. Dimeloe S, Nanzer A, Ryanna K, Hawrylowicz C. Regulatory T cells, inflammation and the allergic response-the role of glucocorticoids and Vitamin D. J Steroid Biochem Mol Biol 2010;120:86-95. https://doi.org/10.1016/j.jsbmb.2010.02.029
  56. Brehm JM, Celedón JC, Soto-Quiros ME, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am J Respir Crit Care Med 2009;179:765-771. https://doi.org/10.1164/rccm.200808-1361OC
  57. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 2009;106:18704-18709. https://doi.org/10.1073/pnas.0905063106
  58. Giri DK, Mehta RT, Kansal RG, Aggarwal BB. Mycobacterium avium-intracellulare complex activates nuclear transcription factor-kappaB in different cell types through reactive oxygen intermediates. J Immunol 1998;161:4834-4841.
  59. Schweizer M, Peterhans E. Oxidative stress in cells infected with bovine viral diarrhoea virus: a crucial step in the induction of apoptosis. J Gen Virol 1999;80(Pt 5):1147-1155. https://doi.org/10.1099/0022-1317-80-5-1147
  60. Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 2007;67:946-950. https://doi.org/10.1158/0008-5472.CAN-06-3123
  61. Reed CE, Milton DK. Endotoxin-stimulated innate immunity: a contributing factor for asthma. J Allergy Clin Immunol 2001;108:157-166. https://doi.org/10.1067/mai.2001.116862
  62. Braun-Fahrländer C. Environmental exposure to endotoxin and other microbial products and the decreased risk of childhood atopy: evaluating developments since April 2002. Curr Opin Allergy Clin Immunol 2003;3:325-329. https://doi.org/10.1097/00130832-200310000-00001
  63. Macaubas C, DeKruyff RH, Umetsu DT. Respiratory tolerance in the protection against asthma. Curr Drug Targets Inflamm Allergy 2003;2:175-186. https://doi.org/10.2174/1568010033484304
  64. Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol 2003;36:95-109. https://doi.org/10.5483/BMBRep.2003.36.1.095
  65. Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin. Mol Nutr Food Res 2008;52:987-994. https://doi.org/10.1002/mnfr.200700259
  66. Chan C, Li L, McCall CE, Yoza BK. Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol 2005;175:461-468. https://doi.org/10.4049/jimmunol.175.1.461
  67. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009;30:475-487. https://doi.org/10.1016/j.it.2009.07.009
  68. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007;447:972-978. https://doi.org/10.1038/nature05836