DOI QR코드

DOI QR Code

Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method

콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조

  • Park, Jin-Nam (Department of New & Renewable Energy, Kyungil University)
  • 박진남 (경일대학교 신재생에너지학과)
  • Received : 2013.02.15
  • Accepted : 2013.03.14
  • Published : 2013.03.31

Abstract

Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.

고분자전해질 연료전지에서 사용되는 전도성 카본에 백금이 담지된 전극촉매를 콜로이드법을 이용하여 합성하였다. 콜로이드법 합성을 위한 백금 전구체로는 PSA (platinum sulfite acid)를 사용하였으며, 고가의 전구체를 대체하기 위해 CPA (chloroplatinic acid)를 사용하여 합성하였다. PSA를 전구체로 하여 제조한 전극촉매는 10~40 wt% 담지량에서 3.5 nm 이하의 백금 입자크기와 90% 이상의 백금 담지수율을 보였다. CPA를 전구체로 사용한 경우에는 10~40 wt% 담지량에서 4.4 nm 이하의 백금 입자 크기를 보였으며 담지수율은 80% 이상이었다. 제조한 20 wt% Pt/VXC72 전극촉매로 MEA (membrane electrode assembly)를 제조하여 I-V 곡선을 측정하였으며, 제조한 전극촉매를 이용한 막전극접합체는 상용전극촉매를 사용한 경우와 동등한 성능을 보였다.

Keywords

References

  1. Tada T., "High Dispersion Catalysis including Novel Carbon Supports," Handbook of Fuel Cells, 3, 481-488 (2003).
  2. Watanabe, M., Tryk, D. A., Wakisaka, M., Yano, H., and Uchida, H., "Overview of Recent Developments in Oxygen Reduction Electrocatalysis," Electrochimica Acta, 84, 187-201 (2012). https://doi.org/10.1016/j.electacta.2012.04.035
  3. Kinoshita, K., Carbon, John Wiley & Sons, 1988, pp. 397-400.
  4. Petrow, H. G., and Allen, R. J., "Finely Particulated Colloidal Platinum Compound and Sol for Producing the Same, and Method of Preparation of Fuel Cell Electrodes and the Like Employing the Same," US Patent No. 4,044,193 (1977).
  5. Jouett, H. R., "Study of the Precipitation of Platinum from Dilute Aqueous Solution," DOE, Technical Report IS-T-1187, 1985.
  6. Regalbuto, J., Ansel, O., and Miller, J., "An Evaluation of Pt Sulfite Acid (PSA) as Precursor for Supported Pt Catalysts," Topics in Catalysis, 39(3-4), 237-243 (2006). https://doi.org/10.1007/s11244-006-0062-1
  7. Chon, H. Z., Catalysis: An Introduction, 3rd ed., Hanrimwon, Seoul, 1995, pp. 183-189.
  8. Cullity, B. D., Elements of X-ray Diffraction, 2nd Ed., Addison-Wesley, Reading, 1978, pp. 99-106.
  9. Creighton, J. A., and Eadon, D. G., "Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements," J. Chem. Soc., Faraday Trans., 87(24), 3881-3891 (1991). https://doi.org/10.1039/ft9918703881
  10. Qin, X., Miao, Z., Wang, X., Fang, Y., Zhang, D., Chen, Q., and Shao, X., "Synthesis of Platinum Nanoparticles Stabilized in Polyvinyl Alcohol and Their Electrocatalytic Properties," Anal. & Bioanal. Electrochem., 3(4), 393-405 (2011).
  11. Zhou, Z., Wang, S, Zhou, W., Jiang, L., Wang, G., Sun, G., Zhou, B., and Xin, Q., "Preparation of Highly Active Pt/C Cathode Electrocatalysts for DMFCs by an Improved Aqueous Impregnation Method," Phys. Chem. Chem. Phys., 5, 5485-5488 (2003). https://doi.org/10.1039/b310721c
  12. Markovic, N. M., Schmidt, T. J., Stamenkovic, V., and Ross, P. N., "Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review," Fuel Cells, 1(2), 105-116 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9

Cited by

  1. Facile Strategy for Mass Production of Pt Catalysts for Polymer Electrolyte Membrane Fuel Cells Using Low-Energy Electron Beam vol.10, pp.11, 2013, https://doi.org/10.3390/nano10112216