DOI QR코드

DOI QR Code

Characterization of Poly(vinyl alcohol) Nanocomposite Films with Various Clays

다양한 점토를 이용한 폴리(비닐 알코올) 나노 복합체 필름의 특성 연구

  • Ham, Miran (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Energy and Applied Optics Team, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 함미란 (금오공과대학교 에너지융합소재 공학부) ;
  • 김정철 (한국생산기술연구원) ;
  • 장진해 (금오공과대학교 에너지융합소재 공학부)
  • Received : 2012.11.25
  • Accepted : 2013.01.08
  • Published : 2013.03.25

Abstract

Poly(vinyl alcohol) (PVA) hybrid films containing 5 wt% pristine clay mineral were synthesized in the water solution. The various PVA hybrid films were synthesized from structurally different pristine clays: saponite (SPT), montmorillonite (MMT), hectorite (SWN), hydrophilic bentonite (PGV), and mica (Mica). The thermo-optical properties and morphologies of the PVA hybrid films were evaluated with various pristine clays. The nanostructure of the hybrid films was observed using transmission electron microscopy, which showed that the clay layers were well dispersed into the matrix polymer, although some clusters or agglomerated particles were also detected. The addition of pristine clay was more effective with regard to improving the thermal properties and gas barrier characteristics, whereas the optical transparency of the PVA hybrid films deteriorated with pristine clay.

순수한 점토 5 wt%를 포함하는 poly(vinyl alcohol)(PVA) 나노 복합체 필름을 수용액상에서 합성하였다. 합성된 PVA 복합체 필름에는 구조적으로 각각 다른 사포나이트(SPT), 몬모릴로나이트(MMT), 헥토라이트(SWN), 수용성 벤토나이트(PGV) 및 마이카(Mica) 등의 점토를 사용하였다. 이처럼 여러 가지 순수한 점토가 포함된 PVA 복합체 필름에 대해 열적-광학적 성질 및 모폴로지를 평가하였으며, 전자 현미경을 통해 관찰된 PVA 복합체 필름의 나노 구조에서는 점토가 매트릭스에 잘 분산된 부분도 있었지만, 일부에서는 뭉친 부분도 발견되었다. 점토를 사용한 PVA 복합체 필름의 경우에 열적 성질이나 가스 차단성을 증가시키는 데에는 매우 효과적이었지만, 이와는 반대로 광학 투명성에서는 그렇지 못하였다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. Bernard, A. Favier, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, Polymer, 47, 1073 (2006). https://doi.org/10.1016/j.polymer.2005.12.004
  2. M. Levine, G. Iikka, and P. Weis, J. Polym. Sci. Part B: Polym. Chem., 2, 915 (1964). https://doi.org/10.1002/pol.1964.110020918
  3. S. M. Tadavarthy, J. H. Moller, and K. Amplatz, Am. J. Roentgenol., 125, 609 (1975). https://doi.org/10.2214/ajr.125.3.609
  4. W.-Y. Chiang and C.-M. Hu, J. Appl. Polym. Sci., 30, 4045 (1985). https://doi.org/10.1002/app.1985.070301008
  5. J. Wen, V. J. Vasudevan, and G. L. Wilkes, J. Sol-Gel Sci. Technol., 5, 115 (1995). https://doi.org/10.1007/BF00487727
  6. R. Y. M. Huang and J. W. Rhim, Polym. Int., 30, 129 (1993). https://doi.org/10.1002/pi.4990300119
  7. S. K. Ham, M. H. Jung, and J.-H. Chang, Polymer(Korea), 30, 298 (2006).
  8. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74, 133 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  9. I. Sakurada, Poly(vinyl alcohol) Fibers, Marcel Dekker, New York, 1985.
  10. W. Y. Chuang, T. H. Yong, W. Y. Chiu, and C. Y. Lin, Polymer, 41, 5633 (2000). https://doi.org/10.1016/S0032-3861(99)00818-6
  11. Y. Fukushima and S. Inagaki, Incl. Phenom., 5, 473 (1987). https://doi.org/10.1007/BF00664105
  12. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  13. T. Srikhirin, A. Moet, and J. B. Lando, Polym. Adv. Tech., 9, 491 (1998). https://doi.org/10.1002/(SICI)1099-1581(199808)9:8<491::AID-PAT794>3.0.CO;2-0
  14. Y. S. Chol and I. J. Chung, Korea Chem. Eng., 46, 23, (2008).
  15. P. C. Lebaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  16. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 5, 1064 (1993). https://doi.org/10.1021/cm00032a005
  17. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  18. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999). https://doi.org/10.1016/S0169-1317(99)00019-8
  19. D. Shi, W. Yu, R. K. Y. Li, Z. Ke, and J. Yin, Eur. Polym. J., 43, 3250 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.030
  20. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003). https://doi.org/10.1002/app.12996
  21. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000). https://doi.org/10.1021/cm000506g
  22. J.-H. Chang, "Permeation Properties of Water-Soluble Polymer Nanocomposite Systems", in Barrier Properties of Polymer Clay Nanocomposites, Vikas Mittal, Editor, Nova Science Publishers, Inc., Chapter 6, pp. 117-137 (2009).
  23. Y.-H. Yu, C.-Y. Lin, J.-M. Yeh, and W.-H. Lin, Polymer, 44, 3553 (2003). https://doi.org/10.1016/S0032-3861(03)00062-4
  24. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31, 1335 (1996). https://doi.org/10.1007/BF00353114
  25. G. Legaly, Developments in Ionic Polymers, Elsevier, London, Vol 2, p 77 (1986).
  26. G. Legaly, Appl. Clay Sci., 15, 1 (1999). https://doi.org/10.1016/S0169-1317(99)00009-5
  27. R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nature Mater., 5, 494 (2006). https://doi.org/10.1038/nmat1655
  28. K. Haraguchi, M. Ebato, and T. Takehisa, Adv. Mater., 18, 2250 (2006). https://doi.org/10.1002/adma.200600143
  29. J.-H. Yeun, G.-S. Bang, B. Y. Park, and J.-H. Chang, J. Appl. Polym. Sci., 101, 591 (2006). https://doi.org/10.1002/app.23372
  30. S. W. Jang and J.-H. Chang, Polymer(Korea), 31, 221 (2007).
  31. J. E. Shin, M. R. Ham, J. C. Kim, and J.-H. Chang, Polymer (Korea), 35, 402 (2011).
  32. W. F. Jaynes and J. M. Bigham, Clays & Clay Minerals, 35, 440 (1987). https://doi.org/10.1346/CCMN.1987.0350604
  33. S.-H. Hsiao, G.-S. Liou, and L.-M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001). https://doi.org/10.1002/app.1306
  34. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004). https://doi.org/10.1016/j.polymer.2004.05.012
  35. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003). https://doi.org/10.1002/app.11884
  36. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001). https://doi.org/10.1021/ma000565f
  37. T. K. Chen, Y. I. Tien, and K.-H. Wei, Polymer, 41, 1345 (2000). https://doi.org/10.1016/S0032-3861(99)00280-3
  38. S. Kumar, J. P. Jog, and U. Natarajan, J. Appl. Polym. Sci., 89, 1186 (2003). https://doi.org/10.1002/app.12050
  39. J.-H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005). https://doi.org/10.1002/app.22382
  40. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002). https://doi.org/10.1016/S0032-3861(02)00400-7
  41. H. R. Frischer, L. H. Gielgens, and T. P. M. Koster, Acta Polym., 50, 122 (1999). https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  42. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001). https://doi.org/10.1021/ma010780b
  43. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  44. D. H. Weinkauf and D. R. Paul, Effect of Structural Order on Barrier Properties, American Chemical Society, Washington, DC, 1990.
  45. C. Joly, M. Smaihi, L. Porcar, and R. D. Noble, Chem. Mater., 11, 2331 (1999). https://doi.org/10.1021/cm9805018
  46. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  47. J.-H. Chang and K. M. Park, Polym. Eng. Sci., 41, 2226 (2001). https://doi.org/10.1002/pen.10918

Cited by

  1. Flexible clay hybrid films with various poly(vinyl alcohol) contents: Thermal properties, morphology, optical transparency, and gas permeability vol.21, pp.12, 2013, https://doi.org/10.1007/s13233-013-1182-7
  2. Preparation and Assessment of Heat-Treated α-Chitin Nanowhiskers Reinforced Poly(viny alcohol) Film for Packaging Application vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101883
  3. 유기화 몬모릴로나이트를 사용한 열방성 액정 고분자 나노 복합체의 물성 비교 vol.42, pp.1, 2013, https://doi.org/10.7317/pk.2018.42.1.41
  4. Comparative Analysis of Properties of PVA Composites with Various Nanofillers: Pristine Clay, Organoclay, and Functionalized Graphene vol.9, pp.3, 2013, https://doi.org/10.3390/nano9030323