DOI QR코드

DOI QR Code

Aerodynamics Characteristics on a Canard-Controlled Projectile

카나드에 의하여 방향조종 되는 탄의 공력특성에 관한 실험적 연구

  • 박영하 (경상대학교 대학원 항공우주공학과) ;
  • 제상언 ((주)한화 종합연구소) ;
  • 조수용 (경상대학교 항공기부품기술연구센터)
  • Received : 2012.03.05
  • Accepted : 2012.12.20
  • Published : 2013.02.01

Abstract

An experimental study was conducted on a subsonic wind tunnel to obtain aerodynamic coefficients for various situations in order to control the direction of a projectile. The angle of attack on the projectile was varied from $-5^{\circ}$ to $15^{\circ}$ and the roll angle of canard was changed from $0^{\circ}$ to $90^{\circ}$. The angle of attack on the canard was adjusted from $-20^{\circ}$ to $20^{\circ}$ and various inlet velocities were applied. Maximum Reynolds number based on the diameter of projectile was $5.5{\times}10^5$. The measured aerodynamic coefficients showed the same results for the various inlet velocities, and the highest effect on the canard was shown when the canard was set to the roll angle of $0^{\circ}$.

카나드에 의하여 방향조정 되는 탄에서, 여러 상황에 대응하는 공력계수의 값을 획득하기 위한 실험적인 연구를 아음속 풍동에서 수행하였다. 탄의 받음각은 $-5^{\circ}{\sim}15^{\circ}$ 까지 변경하였으며, 카나드의 롤각은 $0^{\circ}{\sim}90^{\circ}$ 까지 변경하였다. 방향 전환을 위한 카나드의 받음각은 $-20^{\circ}{\sim}20^{\circ}$ 까지 변경하였다. 여러 입구유속에서 시험을 수행하였으며, 모델의 직경을 기준으로 최대 레이놀즈수는 $5.5{\times}10^5$ 였다. 측정된 공력계수의 값들은 유속의 변화에 대하여 동일한 결과를 보여주었으며, 카나드 롤각이 $0^{\circ}$ 인 경우에 방향 전환을 위한 카나드의 효과가 가장 크게 나타났었다.

Keywords

References

  1. 오세윤, 김성철, 이도관, 최준호, 안승기, "회전발사체용 마그너스 효과 측정기법의 개발," 한국항공우학회지, 제35권, 제1호, 2007, pp.79-86
  2. 제상언, "조종면을 가진 회전 안정탄에 대한 공력특성연구," 경상대학교 박사학위논문, 2009
  3. 김기표, "1D CCM 탄도수정 성능예측 및 알고리즘 구현 연구," 한국군사과학기술학회지, 제10권, 제1호, 2007, pp.5-13
  4. 김기표, 정명지, 홍종태, "2D 탄도수정탄의 형상설계 연구," 한국군사과학기술학회지, 제11권, 제4호, 2008, pp.5-12
  5. Corriveau, D., Berner, C. and Fleck, V., "Trajectory Correction using Impulse Thrusters for Conventional Artillery Projectiles," 23rd Int. Symp. on Ballistics, Tarragona, Spain, April, 16-20, 2007
  6. Despirito, J. and Heavey, K. R., "CFD Computation of magnus Moment and Roll Damping Moment of a Spinning Projectile," AIAA 2004-4713, Province, Rhode Island, USA
  7. Platzer, M. F., Tuncer, I. H. and Vandyken, R. D., "A Computational Study of Subsonic Flowfields over A Missile Configuration," AIAA-97-0635, Reno, Nevada, USA
  8. Kokes, J., Costello, M. and Sahu, J., "Generating an Aerodynamic Model for Projectile Flight Simulation Using Unsteady, Time Accurate Computational Fluid Dynamics Results," ARL-CR-577, Army Research Lab., 2006
  9. Lamont, P. J., "Pressure Around an Inclined Ogive Cylinder with Laminar, Transitional or Turbulent Separation," J. AIAA, Vol. 22, No. 11, 1982, pp.1492-1499
  10. Smith, E. H., Hebbar, S. K. and Platzer, M. F., "Aerodynamics Characteristics of a Canard-Controlled Missile at High Angle of Attack," J. Apacecraft and Rockets, Vol. 31, No. 5, 1994, pp.766-772 https://doi.org/10.2514/3.26510
  11. Bak, K. M., "Experimental Investigation and Computational Fluid Dynamics Analysis on Missile with Grid Fin in Subsonic Flow," Int. J. of Eng. Science and Technology, Vol. 2, No. 11, 2010, pp.6214-6220
  12. Schwind, R. G. "High Angle Canard Missile Test in the Ames 11-Foot Transonic Wind Tunnel," NASA-CR-2993, 1978
  13. Wernert, P., Leopold, F., Bidino, D. and Juncker, J., "Wind tunnel tests and open-loop trajectory simulations for a 155 mm canards guided spin stabilized projectile," AIAA-2008-6881, Honolulu, Hawaii, USA
  14. Washington, W. D., Miller, M. S., "Experimental Investigations on Grid Fin Aerodynamics: A Synopsis of Nine Wind Tunnel and Three Flight Tests," RTO-MP-5, RTO AVT Symp. Sorrento, Italy, 1998
  15. DeMar, J. S., "Model Rocket Drag Analysis Using A Computerized Wind Tunnel," NAR-52094, NAR R&D Report, 1995
  16. Pettersson, T., Buretta, R., and Cook, D. "Aerodynamics and Flight Stability for a Course Corrected Artillery Round," 23rd Int. Symp. on Ballistics, Tarragona, Spain, April, 16-20, 2007