• 제목/요약/키워드: Aerodynamic-Coefficient

검색결과 383건 처리시간 0.033초

경험적 최적화 기법을 이용한 자동차 공력저항 예측 프로그램 개발 (Development of a Prediction Program of Automotive Aerodynamic Drag Coefficient Using Empirical Optimization Method)

  • 한석영;맹주성;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.140-145
    • /
    • 2002
  • At present, wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in motor company. But, wind tunnel test requires much cost and time, and CFD has about 30% error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also a mathematical optimization method using GRG method was added to the program. The program was applied to six cars. Aerodynamic drag coefficient values of six cars were Predicted with 4.857% average error. The optimization method was also applied to six cars. Three parameters selected from sensitivity analysis were determined to reduce the afterbody drag coefficient to the value established by a designer and when some parameters were changed for a developing automotive, optimal modifiable parameters were determined to preserve the same drag coefficient as the original automotive. It was verified that this program could predict the aerodynamic drag coefficient effectively and accurately, and this program with GRG method could determine optimal values of parameters.

  • PDF

풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구 (A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD)

  • 임경진
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

유전 알고리즘을 이용한 Carr의 차량 하체 공력계수 최적화 (Optimization of Carr's Automotive Aerodynamic Underbody Drag Coefficient Using Genetic Algorithm)

  • 김기혁;이태섭
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.518-520
    • /
    • 2015
  • Automotive aerodynamic drag coefficient is important variable for vehicle's driving performance and fuel economy. In this research, we applied genetic algorithm to determine the geometrical figure which can optimize Carr's automotive aerodynamic underbody coefficient. And it's verified by previous research.

  • PDF

자동차 공력저항 예측 프로그램 개발 및 형상인자의 최적화 (Development of a Predicting Program of Vehicle Aerodynamic Drag and Optimization of Shape Parameters)

  • 한석영;맹주성;김무상;박재용
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.223-227
    • /
    • 2002
  • Wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in domestic motor companies. But, wind tunnel test requires much cost and time, and CFD has a relatively large error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also GRG method was added to the program in order to decide optimal values of some parameters. The program was applied to 24 cars and the aerodynamic drag coefficients were predicted with 4.82% average error. Optimization was also accomplished to 6 cars. Some parameters to be modified were determined (1) to reduce the afterbody drag coefficient to the value established by a designer and (2) to preserve the same drag coefficient as the original automotive when some parameters have to be changed in the viewpoint of design. It was verified that the developed program can predict the aerodynamic drag coefficient appropriately and determine optimal values of some parameters.

벨마우스 깊이가 다른 소형축류홴의 공력특성에 대한 실험적 연구 (Experimental Study on the Aerodynamic Performance Characteristics of a Small-Size Axial Fan with the Different Depths of Bellmouth)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.73-78
    • /
    • 2013
  • A Small-size axial fan(SSAF) has widely been utilized to circulate a cooling air in a refrigerator, etc. Generally, the aerodynamic performance of SSAF is strongly dependent upon the depth between SSAF and bellmouth, and it includes axial, partially stalled, mostly stalled and radial flow regions according to the flow coefficient. In this study, four kinds of bellmouth depths were considered to analyze the aerodynamic performance of SSAF. As a bellmouth depth increases, a maximum flowrate decreases, but a maximum static pressure increases. Also, stall region includes an inflection point in all aerodynamic performance curves. Finally, a static pressure efficiency shows the maximum value of 37%.

항공기 저속 세로축 공력 계수 예측에 관한 연구 (Prediction of the Logitudinal Aerodynamic Coefficients of the Aircraft at Low Speed)

  • 강정훈
    • 한국항공운항학회지
    • /
    • 제8권1호
    • /
    • pp.83-95
    • /
    • 2000
  • Lift, drag, pitching moment, what we call longitudinal aerodynamic coefficient, effects airplanes directly, so the method to find the accurate result quickly is an important factor from the beginning of the aircraft design. There are different ways to find aerodynamic coefficient such as empirical methods, numerical analysis methods, wind tunnel tests, and finally through an actual flight tests, but choosing the best methods depends on the due date or the cost. The accuracy varies on each design level, but all this methods have relationship to complement and balance each other, so by combining proper methods, the best result can be obtained. At this paper, empirical methods and numerical analysis method were experimented, compared, and reviewed to find the availability of each method and by combining two methods accurate result was obtained. So, we applied this methods to predict the aerodynamic coefficient on cruise configuration aircraft, and was able to obtain more accurate result on the low speed longitudinal aerodynamic coefficient. Also by watching there result, we are able to predict the errors before the actual wind tunnel test.

  • PDF

Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings

  • Yong Chul Kim;Shuyang Cao
    • Wind and Structures
    • /
    • 제36권4호
    • /
    • pp.249-261
    • /
    • 2023
  • Aerodynamic force coefficients are generally prescribed by an ensemble average of ten and/or twenty 10-minute samples. However, this makes it difficult to identify the exact probability distribution and exceedance probability of the prescribed values. In this study, 12,600 10-minute samples on three tall buildings were measured, and the probability distributions were first identified and the aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (cumulative probabilities) of wind load were then evaluated. It was found that the probability distributions of the mean and fluctuating aerodynamic force coefficients followed a normal distribution. The ratios of aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (Cf,Non) to the ensemble average of 12,600 samples (Cf,Ens), which was defined as an adjusting factor (Cf,Non/Cf,Ens), were less than 2%. The effect of coefficient of variation of wind speed on the adjusting factor is larger than that of the annual non-exceedance probability of wind load. The non-exceedance probabilities of the aerodynamic force coefficient is between PC,nonex = 50% and 60% regardless of force components and aspect ratios. The adjusting factors from the Gumbel distribution were larger than those from the normal distribution.

이미지 분석을 통한 서양측백나무의 광학적 공극도 산정 및 공기역학계수와의 상관성 평가 (Evaluation of Optical Porosity of Thuja occidentalis by Image Analysis and Correlation with Aerodynamic Coefficients)

  • 장동화;양가영;김종복;권경석;하태환
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.39-47
    • /
    • 2021
  • Reduction effect of the spread of odorant and fine dust through windbreak trees can be predicted through numerical analysis. However, there is a disadvantage that a large space and destructive experiments must be carried out each time to calculate the aerodynamic coefficient of the tree. In order to overcome these shortcomings, In this study, we aimed to estimate the aerodynamic coefficient (C0, C1, C2) by using image processing. Thuja occidentalis, which can be used as windbreak were used as the material. The leaf area index was estimated from the leaf area ratio using image processing with leaf weight, and the optical porosity was calculated through image processing of photos taken from the side while removing the leaves step-by-step. Correlation analysis was conducted with the aerodynamic coefficient of Thuja occidentalis calculated from the wind tunnel test and leaf area index and optical porosity calculated from the image analysis. The aerodynamic coefficient showed positive and negative correlations with the leaf area index and optical porosity, respectively. The results showed that the possibility of estimating the aerodynamic coefficient using image processing.

Transiting test method for galloping of iced conductor using wind generated by a moving vehicle

  • Guo, Pan;Wang, Dongwei;Li, Shengli;Liu, Lulu;Wang, Xidong
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.155-170
    • /
    • 2019
  • This paper presents a novel test method for the galloping of iced conductor using wind generated by a moving vehicle which can produce relative wind field. The theoretical formula of transiting test is developed based on theoretical derivation and field test. The test devices of transiting test method for aerodynamic coefficient and galloping of an iced conductor are designed and assembled, respectively. The test method is then used to measure the aerodynamic coefficient and galloping of iced conductor which has been performed in the relevant literatures. Experimental results reveal that the theoretical formula of transiting test method for aerodynamic coefficient of iced conductor is accurate. Moreover, the driving wind speed measured by Pitot tube pressure sensors, as well as the lift and drag forces measured by dynamometer in the transiting test are stable and accurate. Vehicle vibration slightly influences the aerodynamic coefficients of the transiting test during driving in ideal conditions. Results of transiting test show that the tendencies of the aerodynamic coefficient curve are generally consistent with those of the wind tunnel tests in related studies. Meanwhile, the galloping is fairly consistent with that obtained through the wind tunnel test in the related literature. These studies validate the feasibility and effectiveness of the transiting test method. The present study on the transiting test method provides a novel testing method for research on the wind-resistance of iced conductor.

풍력터빈 블레이드상의 공력하중분포 해석 (Spanwise Aerodynamic Loads along the Wind Turbine Blade)

  • 이교열;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • The spanwise aerodynamic loads of the wind turbine blade are investigated numerically. The blade shape such as twist and chord length along the blade span is obtained from the procedure of aerodynamically optimal design. The rated tip speed ratio and the rated wind velocity are set to 7 and 12m/s respectively. The BEM method is applied to obtain both the aerodynamic performance of the wind turbine (Fig.1) and the spanwise aerodynamic loads along the blade span including Prandtl's tip loss factor. The maximum running power coefficient is occurred around 90% radial position from hub (Fig.2). The distributed aerodynamic loads along the blade span can be used for structure analysis.

  • PDF