References
- G. Chinta, Analytic ranks of elliptic curves over cyclotomic fields, J. Reine Angew. Math. 544 (2002), 13-24.
- J. Coates, Z. Liang, and R. Sujatha, The Tate-Shafarevich group for elliptic curves with complex multiplication II, Milan J. Math. 78 (2010), no. 2, 395-416. https://doi.org/10.1007/s00032-010-0127-2
- W. Duke, J. B. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994), no. 2, 219-239. https://doi.org/10.1007/BF01231759
-
D. Kim, On the Tate-Shafarevich group of elliptic curves over
$\mathbb{Q}$ , Bull. Korean Math. Soc. 49 (2012), no. 1, 155-163. https://doi.org/10.4134/BKMS.2012.49.1.155 - S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1-36. https://doi.org/10.1007/s00222-002-0265-4
- B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil Cuves, Invent. Math. 25 (1974), 1-61. https://doi.org/10.1007/BF01389997
- B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1-48. https://doi.org/10.1007/BF01388731
- R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523-558. https://doi.org/10.1215/S0012-7094-03-11835-9