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ON THE p-PRIMARY PART OF TATE-SHAFAREVICH

GROUP OF ELLIPTIC CURVES OVER Q WHEN p IS

SUPERSINGULAR

Dohyeong Kim

Abstract. Let E be an elliptic curve over Q and p be a prime of good
supersingular reduction for E. Although the Iwasawa theory of E over the
cyclotomic Zp-extension of Q is well known to be fundamentally different
from the case of good ordinary reduction at p, we are able to combine the
method of our earlier paper with the theory of Kobayashi [5] and Pollack
[8], to give an explicit upper bound for the number of copies of Qp/Zp

occurring in the p-primary part of the Tate-Shafarevich group of E over
Q.

1. Introduction

Let E be an elliptic curve over Q. We recall that the Tate-Shafarevich group
of E/Q is defined by

X(E/Q) = Ker

(

H1
(

Q, E(Q)
)

−→
∏

v

H1
(

Qv, E(Qv)
)

)

,

where v runs over all places of Q, and Qv is the completion of Q at v. It is
well-known that the p-primary subgroup of X(E/Q) has a finite Zp-corank,
and we denote this corank by tp. It is conjectured that tp = 0 for every prime
p, but this is unknown when the complex L-function has a zero of order at
least 2 at s = 1. We say a prime p is good ordinary (resp. good supersingular)
if E has good ordinary reduction (resp. good supersingular reduction) at p.
The aim of present paper is to compute an upper bound for tp for all good
supersingular primes p. For the case of good ordinary primes, see the author’s
previous paper [4]. If E has complex multiplication and p is ordinary, then a
better bound is obtained in [2].

Suppose from now on that p is a prime of good supersingular reduction for
E. We recall that if F is a finite extension of Q, then the (p∞-)Selmer group
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of E over F is defined as

Sel(E/F ) := Ker
(

H1(F,E[p∞]) −→
∏

v

H1(Fv, E)
)

,

where v runs over all places of F , and Fv is the completion of F at v, and
E[p∞] is the Galois module of p-power division points in E(Q). Let Qcyc be
the cyclotomic Zp-extension of Q. Put

Sel(E/Qcyc) = lim
−→

Sel(E/F ),

where F runs over the finite extensions of Q contained in Qcyc and the inductive
limit is taken relative to the restriction maps. Let Γ := Gal(Qcyc/Q) and define
the Iwasawa algebra Λ(Γ) by

Λ(Γ) = lim
←−

Zp[Γ/U ],

where U runs over the open subgroups of Γ. The natural action of Γ on
H1(Qcyc, E[p∞]) gives rise to a continuous action of Γ on Sel(E/Qcyc), which
extends to an action of the whole Iwasawa algebra Λ(Γ). For an abelian group
A, denote by A∧ the Pontryagin dual Hom(A,Qp/Zp) of A. We write the
Pontryagin dual of a Selmer group by

X(E/F ) := Sel(E/F )∧ := Hom(Sel(E/F ),Qp/Zp).

Our previous method used in [4] heavily depends on the important theorem that
X(E/Qcyc) is a torsion module over Λ(Γ) when p is a good ordinary prime. In
contrast, when p is a good supersingular prime, which is the case of our interest,
it is known that X(E/Qcyc) is not a torsion Λ(Γ)-module. Nevertheless, we can
use the ingenius idea of Kobayashi [5] of considering modified Selmer groups,
the duals of which are torsion over Λ(Γ). Combined with our earlier method
in [4], we can compute an upper bound for tp for supersingular primes p. Let
δ = 1 when the sign is + and δ = 0 otherwise. Our main results are:

Theorem 1.1. Let L±p (E,α, T ) be Pollack’s modified p-adic L-functions. Let

Tm±
p (E) be the exact power of T dividing L±p (E,α, T ). Then for a constant

C = C(E) which depends on E but not on p, we have m±p (E) ≤ Cp8+δ for all

good supersingular primes p.

The definition of the power series L±p (E,α, T ) in Zp[[T ]] is given in Section 2.
As a corollary, we prove:

Corollary 1.2. Let gE be the rank of E(Q). For all primes p where E has

good supersingular reduction, we have tp ≤ Cp8 − gE.

The proofs of Theorem 1.1 and Corollary 1.2 are similar to those in our
earlier paper [4]. However, there are additional estimations involving the mod-
ified p-adic logarithm map. We remark that in the case when E has complex
multiplication, an alternative method used in [2] to obtain a better bound for
tp for sufficiently large ordinary primes does not yet generalize to supersingular
primes.
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2. Iwawawa theory for a supersingular prime

In this section, we recall the Iwasawa theory of E at a supersingular prime
p. On the algebraic side, we will define the modified Selmer groups following
Kobayashi [5], while on the analytic side we will use the theory of Pollack [8]
who constructed the modified p-adic L-functions L±p (E,α, T ). We fist begin
with the modified Selmer groups. For a each n ≥ 0, let Fn = Q(µpn+1) and
let F−1 = Q. Let Kn be the completion of Fn at the unique prime of Fn lying
above p. Also let Trn,m : E(Kn) −→ E(Km) be the trace map when n ≥ m.
Plainly, we have E(Km) ⊂ E(Kn) when n ≥ m.

Definition 2.1. We define the n-th modified Selmer groups as

Sel±(E/Fn) := Ker

(

Sel(E/Fn) −→
H1 (Kn, E[p∞])

E± (Kn)⊗Qp/Zp

)

,

where

E+(Kn) := {P ∈ E(Kn)|Trn,m+1 (P ) ∈ E(Km) for even m (0 ≤ m < n)} and

E−(Kn) := {P ∈ E(Kn)|Trn,m+1 (P ) ∈ E(Km) for odd m (0 ≤ m < n)} .

We call Sel+(E/Fn) (resp. Sel−(E/Fn)) the even (resp. odd) Selmer group
over Fn.

We adopt the convention that E±(K−1) = E(Qp), whence it is clear that
we have

Sel±(E/Q) = Sel(E/Q).

One sees easily that the restriction map from Sel(E/Fn) to Sel(E/Fn+1) maps
Sel±(E/Fn) to Sel±(E/Fn+1) and so we can define

Sel±(E/Qcyc) = lim
−→

Sel±(E/Fn).

Also, it is proven in Lemma 9.1 of [5] that the map

Sel±(E/Fn) −→ Sel±(E/Qcyc)

is injective. As usual Selmer groups, the modified Selmer groups over Qcyc

are also modules over Λ(Γ). However, the modified Selmer groups are cru-
cially different from usual Selmer groups in that they are torsion Λ(Γ)-modules.
Kobayashi proved (Theorem 1.2 in [5]):

Theorem 2.2. The modified dual Selmer groups

X±(E/Qcyc) := Sel±(E/Qcyc)∧

are finitely generated torsion Λ(Γ)-modules.

Let R = Zp[[T ]] be the power series ring in a variable T with coefficients
in Zp. Fix a topological generator γ of Γ. The Zp-algebra homomorphism
Λ(Γ) → R sending γ to T + 1 is an isomorphism. Using this isomorphism,
elements in Λ(Γ) will be considered as power series in the variable T . By the
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structure theorem of finitely generated torsion R-modules, there exists non-zero
elements G±j (T ) ∈ R, finite R-modules D± and exact sequences

0 //

⊕k±

j=1 R/G±j (T )R
// X±(E/Qcyc) // D± // 0 .

The products G±(T ) =
∏k±

j=1 G
±

j (T ) are then well-defined up to multiplica-

tion by a unit in R, and G±(T ) are called the characteristic power series of
X±(E/Qcyc). The Iwasawa main conjecture is an assertion that the above
characteristic power series have analytic descriptions via the special values of
the complex L-function, which we now explain. Let NE be the conductor
of E. Since E is modular, there is a primitive normalized Hecke eigenform
f(q) =

∑∞

k=1 akq
k of level NE weight 2 such that ap = p+ 1− |Ẽp(Fp)| for all

primes p prime to NE . For a Dirichlet character χ whose conductor is prime
to NE , the twisted L-function attached to f defined by

L(f, χ, s) = L(E,χ, s) =
∞
∑

n=1

χ(n)an
ns

has analytic continuation to the entire complex plane. Let α and β be the
roots of the equation X2 − apX + p in Q. We fix embeddings of Q into C and

Qp. Using these embeddings, α and β will be considered as elements of C and

Qp. And let Ω+
E be the least positive real period of the Nèron differential on

the minimal Weierstrass model of E. Mazur and Swinnerton-Dyer [6] proved
that we can p-adically interpolate values L(E,χ, 1) as χ varies among Dirichlet
characters of p-power conductor and order. We now recall a special form of
such interpolation property (See Section 14 of [7]) expressed in terms of a power
series. For a character χ of conductor pr+1, we define the Gauss sum as

pr+1

∑

i=1

ζiχ(i),

where ζ is a primitive pr+1-th root of unity.

Theorem 2.3. Fix a global minimal generalized Weierstrass equation for E.

Let p be a prime of good supersingular reduction for E. Let χ be a non-trivial

Dirichlet character of conductor pr+1 and order pr. Then there exists a unique

power series

Lp(E,α, T ) ∈ Qp(α)[[T ]]

with the following properties. Firstly, Lp(E,α, ζ − 1) converges for every p-
power roots of unity ζ. Secondly, this power series interpolate the complex

L-values in the sense that

(1) Lp(E,α, χ(γ) − 1) =
pr+1L(E,χ, 1)

Ω+
Eα

r+1τ(χ)

for every nontrivial Dirichlet characters χ of p-power order and conductor.
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Note that for a supersingular prime p, the p-adic L-function Lp(E,α, T )
is not in Zp[[T ]]. As an analytic counterpart of the modified Selmer groups
which are torsion over Λ(Γ), Pollack [8] introduced the following p-adic loga-
rithmic functions to define the corresponding modified p-adic L-functions which

actually lie in Zp[[T ]]. Let Φn(T ) =
∑p−1

t=0 T tpn−1

be the pn-th cyclotomic poly-
nomial.

Lemma 2.4. The products

log+p (T ) :=
1

p

∞
∏

n=1

(

Φ2n (1 + T )

p

)

,

log−p (T ) :=
1

p

∞
∏

n=1

(

Φ2n−1 (1 + T )

p

)

converge and define power series in Qp[[T ]] which are convergent on the open

unit disc. The zeros of log+p (resp., log−p ) are precisely ζ2n−1 (resp., ζ2n−1−1)
for a pn-th root of unity ζn with n > 0, and these are all simple zeros.

Proof. See Lemma 4.1 of [8]. �

We remark that the above definition is the weight 2 case of the construc-
tion in Lemma 4.1 [8] where modular forms of weight k ≥ 2 are considered.
Furthermore, we can write explicit interpolation properties of them.

Lemma 2.5 ([8], Lemma 4.7). Let ζr be a primitive pr+1-th root of unity. We

write Φj for the pj-th cyclotomic polynomial. Then we have

log+p (ζr − 1) =















0 when 2 | r,

p−(r+1)/2

(r−1)/2
∏

j=1

Φ2j(ζr) when 2 ∤ r

log−p (ζr − 1) =















p−r/2−1
r/2
∏

j=1

Φ2j−1(ζr) when 2 | r,

0 when 2 ∤ r.

Proof. See Lemma 4.7 of [8]. �

The role of log±p is analogous to what a gamma function does to the Riemann
zeta function. It exactly cancels out the trivial zeros and we are interested the
remaining ones. In a more precise terms, we have:

Theorem 2.6 ([8], Theorem 5.6). Under the assumption that p is odd and

ap = 0, we have

(2) Lp(E,α, T ) = L+
p (E,α, T ) log+p (T ) + L−p (E,α, T ) log−p (T )α,

with L±p (T ) ∈ Zp[[T ]].
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Note that the assumption that ap = 0 is harmless for us since we can ignore
finitely many primes when we prove Theorem 1.1, and ap = 0 for every p > 5
due to the Hasse’s bound |ap| ≤ 2

√
p. The Iwasawa main conjecture for the

modified Selmer groups is the equality of L±p (T ) andG±(T ) up to multiplication
by unit in Zp[[T ]]. Kobayashi proved the following in Theorem 1.3 [5] which
amounts to one divisibility of the main conjecture, using Kato’s Euler system.

Theorem 2.7. Let G±(T ) be a characteristic power series of X±(E/Qcyc).
Then G±(T ) divides L±p (T ).

3. Proofs of the main results

Let X(E/Q)[p∞] be the p-primary part of X(E/Q). Recall that the Tate-
Shafarevich group and the Selmer groups are related by the short exact se-
quence

(3) 0 // E(Q)⊗Qp/Zp
// Sel(E/Q) // X(E/Q)[p∞] // 0 .

If E(Q) is of rank gE , andX(E/Q) has Zp-rank hp, then tp = hp−gE. Therefore
we obtain an upper bound for tp from that for hp. Thus it suffices to relate
hp and the order of vanishing of L±p (E,α, T ). We first prove some preliminary
results for the proof of the main theorem. Let ϕ(m) be the Euler totient
function.

Lemma 3.1. Let k be an integer such that 0 < k < n. Then we have

(4) |Φk(ζn)|p = p−ϕ(pn−k)
−1

+ϕ(pn−k+1)−1

.

In particular, we have

| log±p (ζr − 1)|p = pc(r,p),

where c(r, p) is a function which is very small in the sense that for each fixed

r > 1, 0 < c(r, p) < r for all but finitely many primes p.

Proof. We prove it using the explicit cyclotomic polynomials. Write

Φk(T ) =
T pk − 1

T pk−1 − 1
.

Then ζp
k

n and ζp
k−1

n are respectively primitive pn−k-th and pn−k+1-th roots of

unity. By the formula |ζr − 1|p = p−ϕ(pr)−1

, we get equation (4). The second
part comes from direct calculation using Lemma 2.5. Indeed, for odd positive
integer r

∣

∣log+p (ζr − 1)
∣

∣

p
=

∣

∣

∣

∣

∣

∣

p−(r+1)/2

(r−1)/2
∏

j=1

Φ2j(ζr)

∣

∣

∣

∣

∣

∣

p

= p
r+1

2
+
∑
(−ϕ(pr−2j)−1+ϕ(pr−2j+1)−1),
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where the summation runs over j = 1, 2, . . . , (r− 1)/2 in the second line. For a
fixed r, the terms in the summation in the second line converges to zero, thus
c(r, p) is a decreasing function which converges to r+1

2 as p goes to infinity. In
particular, for all but finitely many primes p, we have 0 < c(r, p) < r. For an
even positive r, a similar calculation shows c(r, p) is bounded by r as p goes to
infinity. �

For a Dirichlet character χ of conductor pr and order pr−1 with r ≥ 2,
precisely one of the two values log±p (χ(γ)−1) vanishes according to Lemma 2.5.
Therefore, by (2), nonvanishing of twisted L-values will give nonvanishing of
modified p-adic L-functions.

Proposition 3.2. Let Tm±
p (E) be the exact powers of T dividing L±p (E,α, T ).

Then we have the inequality

hp ≤ m±p (E).

Proof. Consider the restriction map

res : Sel(E/Q) −→ Sel±(E/Qcyc).

As shown in the proof of Proposition 2 in [4], the image of res is fixed by Γ and
the Pontryagin dual of Ker(res) is finite. Therefore, taking Pontryagin dual of
res, we obtain Γ-equivariant surjections

X±(E/Qcyc)Γ −→ X(E/Q)

with finite cokernels. This completes the proof. �

Lemma 3.3. There exists a constant cE which only depends on E but not on

p such that αr+1cEL
±
p (E,α, χ(γ)− 1) is an algebraic integer in Q(χ).

Proof. It is shown in Proposition 1 in Section 3 of [4] that there exists a constant
cE which only depends on E but not on p such that αr+1cELp(E,α, χ(γ)− 1)
is an algebraic integer in Q(χ). Although we made the assumption that p is
ordinary in [4], the proof therein does not use it. �

Finally, we can prove the main theorem. From now on, we assume that the
conductor of χ is p9+δ and the order of χ is p8+δ, where δ is 0 or 1.

Theorem 3.4. Given an elliptic curve E defined over Q, there is a constant

C which depends on E but not on p, such that m±p (E) ≤ Cp8+δ for all super-

singular primes p. Here δ = 1 when the sign is + and δ = 0 otherwise.

Proof. It suffices to prove the assertion for sufficiently large p since we can
adjust C to cover the remaining finitely many cases. Let χ be a Dirichlet
character of conductor p9+δ and order p8+δ. By Theorem 3 of [1], we know the
nonvanishing

L(E,χ, 1) 6= 0
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for sufficiently large primes p. Now let x = α9+δcELp(E,α, χ(γ)− 1) and

y =
∏

σ∈Gal(Q(χ)/Q)

xσ.

Then y belongs to Z and is nonzero. We are going to apply the following
formula

(5) |a|−1p ≤ |a|∞
to y, which is true for all nonzero integers a. Note that Gal(Q(χ)/Q) has
ϕ(p8+δ) elements. Firstly, we have

|xσ|p = |α9+δcEL
±
p (E,α, χ(γ)σ − 1) log±p (χ(γ)

σ − 1)|p
= p

9+δ
2 |cEL±p (E,α, χ(γ)σ − 1) log±p (χ(γ)

σ − 1)|p
= p

9+δ
2 |cE |p · |L±p (E,α, χ(γ)σ − 1)|ppc(8+δ,p)

≤ p
9+δ
2 |cE |p · |χ(γ)σ − 1|m

±
p (E)

p pc(8+δ,p).

In the first line to the second, we used Lemma 2.5, (2) and (1). From the first
line to the second, we used the fact that |α|p = p1/2 for supersingular primes
p. From the second line to the third, we used Lemma 3.1. The argument
for the inequality between the third and forth lines is the following. Recall

that by the definition of m±p (E) we can write L±p (E,α, T ) = Tm±
p (E)H(T ) for

some H(T ) ∈ R. Then |H(χ(γ)σ − 1)|p ≤ 1, whence |L±p (E,α, χ(γ)σ − 1)|p ≤
|χ(γ)σ − 1|p. Applying equation (5) to y and taking the logarithm with base p
(not the p-adic logarithm), we obtain

logp |y|−1p = m±p (E) − ϕ(p8+δ)

(

1

2
(9 + δ) + logp |cE |p + c(8 + δ, p)

)

.(6)

On the other hand, using (1) and the analytic bounds for complex L-functions,
we can show that

|xσ|∞ ≤ C1p
9+δ(7)

for sufficiently large primes p where C1 is a constant depending on E but not
on p. We give the argument for (7) briefly here. It is well known that the
absolute value of the Gauss sum is |τ(χ)|∞ = p9+δ. Thus (1) can be written as

|xσ|∞ =

∣

∣

∣

∣

cEp
9+δL(E,χ, 1)

Ω+
Eτ(χ)

∣

∣

∣

∣

∞

(8)

= p
9+δ
2

∣

∣

∣

∣

cEL(E,χ, 1)

Ω+
E

∣

∣

∣

∣

∞

.(9)

Now (7) would follow from an upper bound of the form

|L(E,χ, 1)|∞ ≤ p
9+δ
2(10)
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since Ω+
E and cE are independent of p. In fact, subconvexity bounds such as

Theorem 3 of [3] shows better result then (10). However, these better estima-
tions will hardly improve our final result so we use (10). The definition of y
together with (7) implies that

|y|∞ ≤
(

C1p
9+δ
)ϕ(p8+δ)

.(11)

Apply (5) to y, then (6) and (11) imply that

(12)

ϕ(p8+δ)
(

logp C1 + 9+ δ
)

≥ m±p (E)− ϕ(p8+δ)

(

9 + δ

2
+ logp |cE |p + c(8 + δ, p)

)

.

Rewriting (12) as an upper bound for m±p (E), we obtain

m±p (E) ≤ ϕ(p8+δ)

(

logp C1 +
3

2
(9 + δ) + c(8 + δ, p) + logp |cE |p

)

.(13)

By Lemma 3.1, c(8+δ, p) is an bounded by 8+δ, and logp |cE |−1p is independent

of p. Also we have ϕ(p8+δ) ≤ p8+δ. Thus, for sufficiently large p, (13) becomes

m±p (E) ≤ p8+δ

(

logp C1 +
9 + δ

2
+ (8 + δ)

)

.(14)

The assertion of the theorem follows if we take C = logp C1 +
3
2 (9 + δ) + (8 +

δ) + logp |cE |p. �

Corollary 3.5. We have tp ≤ Cp8 − gE.

Proof. Consider the Pontryagin dual of the short exact sequence (3). By Propo-
sition 3.2 and Theorem 3.4, we have hp ≤ Cp8+δ. Since Zp-rank is additive
in exact sequences we also have hp = gE + tp. Taking δ = 0, we obtain the
assertion. �

References

[1] G. Chinta, Analytic ranks of elliptic curves over cyclotomic fields, J. Reine Angew. Math.
544 (2002), 13–24.

[2] J. Coates, Z. Liang, and R. Sujatha, The Tate-Shafarevich group for elliptic curves with

complex multiplication II, Milan J. Math. 78 (2010), no. 2, 395–416.
[3] W. Duke, J. B. Friedlander, and H. Iwaniec, Bounds for automorphic L-functions. II,

Invent. Math. 115 (1994), no. 2, 219–239.
[4] D. Kim, On the Tate-Shafarevich group of elliptic curves over Q, Bull. Korean Math.

Soc. 49 (2012), no. 1, 155–163.
[5] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math.

152 (2003), no. 1, 1–36.
[6] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil Cuves, Invent. Math. 25 (1974),

1–61.
[7] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch

and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48.
[8] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke

Math. J. 118 (2003), no. 3, 523–558.



416 DOHYEONG KIM

Department of Mathematics

Pohang University of Science and Technology

Pohang 790-784, Korea

E-mail address: polygon0307@gmail.com


