DOI QR코드

DOI QR Code

Obesity, obesity-related diseases and application of animal model in obesity research An overview

  • Park, Byung-Sung (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University) ;
  • Singh, N.K. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University) ;
  • Reza, A.M.M.T. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University)
  • Received : 2013.12.08
  • Accepted : 2014.01.03
  • Published : 2013.12.30

Abstract

The multi-origin of obesity and its associated diseases made it's a complex area of biomedical science research and severe health disorder. From the 1970s to onwards this health problem turned to an epidemic without having any report of declining yet and it created a red alert to the health sector. Meanwhile, many animal models have been developed to study the lethal effect of obesity. In consequence, many drugs, therapies and strategies have already been adopted based on the findings of those animal models. However, many complicated things based on molecular and generic mechanism has not been clarified to the date. Thus, it is important to develop a need based animal model for the better understanding and strategic planning to eliminate/avoid the obesity disorder. Therefore, the present review would unveil the pros and cons of presently established animal models for obesity research. In addition, it would indicate the required turning direction for further obesity and obesity based disease research.

Keywords

References

  1. P. Kopelman, Health risks associated with overweight and obesity, Obesity Reviews, 8, 13(2007). https://doi.org/10.1111/j.1467-789X.2007.00311.x
  2. D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham and A. H. Anis, The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis, BMC Public Health, 9, 88 (2009). https://doi.org/10.1186/1471-2458-9-88
  3. W. V. Brown, K. Fujioka, P.W. Wilson and K. A. Woodworth, Obesity: why be concerned?, The American Journal of Medicine, 122, 4 (2009). https://doi.org/10.1016/j.amjmed.2008.06.043
  4. Y. Zhang, K. Guo, R. E. LeBlanc, D. Loh, G. J. Schwartz and Y. H. Yu, Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms, Diabetes, 56, 1647 (2007). https://doi.org/10.2337/db07-0123
  5. D. B. West, C. N. Boozer, D. L. Moody and R. L. Atkinson, Dietary obesity in nine inbred mouse strains, American Journal of Physiology, 262, 1025 (1992).
  6. S.W. Keith, D.T. Redden, P.T. Katzmarzyk, M.M. Boggiano, E.C. Hanlon, R.M. Benca, D. Ruden, A. Pietrobelli, J.L. Barger, K.R. Fontaine, C. Wang, L.J. Aronne, S.M. Wright, M. Baskin, N.V. Dhurandhar, M.C. Lijoi, C.M. Grilo, M. Deluca, A.O. Westfall and D.B. Allison, Putative contributors to the secular increase in obesity: exploring the roads less traveled, Int. J. Obes. (Lond.), 30, 1585 (2006) https://doi.org/10.1038/sj.ijo.0803326
  7. B.S. Park, Gamma fatty acid: A Review, J. of the Korean Oil Chemists' Soc, 25, 446 (2008).
  8. L.A. Tartaglia, M. Dembski and X. Weng, Identification and expression cloning of a leptin receptor, OB-R, Cell, 83, 1263 (1995). https://doi.org/10.1016/0092-8674(95)90151-5
  9. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold and J. M. Friedman, Positional cloning of the mouse obese gene and its human homologue, Nature, 372, 425 (1994). https://doi.org/10.1038/372425a0
  10. T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom, Human distribution and release of a putative new gut hormone, peptide YY, Gastroenterology, 89, 1070 (1985).
  11. I.Y. Kim, C.K. Zhoh, S.R.Han,Y.B. Bang and R.Y.Li, Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract, J. of the Korean Oil Chemists' Soc, 30, 272 (2013). https://doi.org/10.12925/jkocs.2013.30.2.272
  12. B.S. Park, Effects of feeding evening primrose oil and hemp seed oil on the deposition of gamma fatty acid in eggs, J. of the Korean Oil Chemists' Soc, 25, 196 (2008).
  13. K.M. Flegal, M.D. Carroll, C.L. Ogden and L.R. Curtin, Prevalence and trends in obesity among U.S. adults, 1999-2008, JAMA, 303, 235 (2010). https://doi.org/10.1001/jama.2009.2014
  14. C.D.C. Health, US: With chart book on trends in the health of Americans, National Center for Health Statistics, DHHS, publication No. 2004-1232 (2004).
  15. K.E. Thorpe, C.S. Florence, D.H. Howard and P. Joski, Trends: The impact of obesity on rising medical spending, Health Aff Suppl Web Exclusives, W4-480-W4-486 (2004).
  16. E.A. Finkelstein, O.A. Khavjou, H. Thompson, J.G. Trogdon, L. Pan, B. Sherry and W. Dietz, Obesity and severe obesity forecasts through 2030, Am J Prev Med, 42, 563 (2012). https://doi.org/10.1016/j.amepre.2011.10.026
  17. C.H.C. Chakraborty, C. H. Hsu, Z. H. Wen, C. S. Lin and G. Agoramoorthy, Zebrafish: a complete animal model for in vivo drug discovery and development, Current Drug Metabolism, 10, 116 (2009). https://doi.org/10.2174/138920009787522197
  18. G. Kari, U. Rodeck and A. P. Dicker, Zebrafish: an emerging model system for human disease and drug discovery, Clinical Pharmacology and Therapeutics, 82, 70 (2007). https://doi.org/10.1038/sj.clpt.6100223
  19. H. Olson, G. Betton and D. Robinson, Concordance of the toxicity of pharmaceuticals in humans and in animals, Regul. Toxicol. Pharmacol, 32, 56 (2000). https://doi.org/10.1006/rtph.2000.1399
  20. J. Hau, Animal Models for Human diseases. Sourcebook of models for biomedical research, PP 3 (2008).
  21. H.S. White, Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs, Epilepsia., 38, 9 (1997).
  22. C. Bolton, The translation of drug efficacy from in vivo models to human disease with special reference to experimental autoimmune encephalomyelitis and multiple sclerosis, Inflammopharmacology, 15, 183 (2007). https://doi.org/10.1007/s10787-007-1607-z
  23. R.R. Leker and S. Constantini, Experimental models in focal cerebral ischemia: are we there yet?, Acta Neurochir, 83, 55 (2002).
  24. J. Wang, J. Fields and S. Dore, The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood, Brain Res, 1222, 214 (2008). https://doi.org/10.1016/j.brainres.2008.05.058
  25. M.A. Rynkowski, G.H. Kim and R.J. Komotar, A mouse model of intracerebral hemorrhage using autologous blood infusion, Nat. Protoc, 3, 122 (2008). https://doi.org/10.1038/nprot.2007.513
  26. F. Homo-Delarche and H.A. Drexhage, Immune cells, pancreas development, regeneration and type 1 diabetes, Trends Immunol, 25, 222 (2004). https://doi.org/10.1016/j.it.2004.02.012
  27. H. Hisaeda, Y. Maekawa and D. Iwakawa, Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells, Nat Med 10, 29 (2004). https://doi.org/10.1038/nm975
  28. A. Coppi, M. Cabinian, D. Mirelman and P. Sinnis, Antimalarial activity of allicin, a biologically active compound from garlic cloves, Antimicrob Agents Chemother, 50, 1731 (2006). https://doi.org/10.1128/AAC.50.5.1731-1737.2006
  29. F. Frischknecth, B. Martin, I. Thiery, C. Bourgouin and R. Menard, Using green fluorescent malaria parasites to screen for permissive vector mosquitoes, Malar J, 5, 23 (2006). https://doi.org/10.1186/1475-2875-5-23
  30. R. Jaenisch and B. Mintz, Simian virus 40DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proc Natl Acad Sci, 71, 1250 (1974). https://doi.org/10.1073/pnas.71.4.1250
  31. J. Gordon and F. Ruddle, Integration and stable germ line transmission of genes injected into mouse pronuclei, Science, 214, 1244 (1981). https://doi.org/10.1126/science.6272397
  32. F. Costantini and E. Lacy, Introduction of a rabbit beta-blobin gene into the mouse germ line, Nature, 294, 92 (1981). https://doi.org/10.1038/294092a0
  33. S. J. Bultman, E. J. Michaud and R. P. Woychik, Molecular characterization of the mouse agouti locus, Cell, 71, 1195 (1992). https://doi.org/10.1016/S0092-8674(05)80067-4
  34. N. Matsunaga, V. Virador and C. Santis, In situ localization of agouti signal protein in murine skin using immunohistochemistry with an ASP-specific antibody, Biochemical and Biophysical Research Communications, 270, 176 (2000). https://doi.org/10.1006/bbrc.2000.2409
  35. S. E. Millar, M. W. Miller, M. E. Stevens and G. S. Barsh, Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated, Development, 121, 3223 (1995).
  36. D. Willard, D. Lu and I. R. Patel, Agouti protein is an antagonist of the melanocytestimulating-hormone receptor, Nature, 371, 799 (1994). https://doi.org/10.1038/371799a0
  37. D. M. J. Duhl, M. E. Stevens and H. Vrieling, Pleiotropic effects of the mouse lethal yellow (A(y)) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs, Development, 120, 1695 (1994).
  38. E. J. Michaud, S. J. Bultman, L. J. Stubbs and R. P. Woychik, The embryonic lethality of homozygous lethal yellow mice (A(y)/A(y)) is associated with the disruption of a novel RNAbinding protein, Genes and Development, 7, 1203 (1993). https://doi.org/10.1101/gad.7.7a.1203
  39. M. L. Klebig, J. E.Wilkinson, J. G. Geisler and R. P.Woychik, Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur, Proceedings of the National Academy of Sciences of the United States of America, 92, 4728 (1995). https://doi.org/10.1073/pnas.92.11.4728
  40. R. L. Mynatt, R. J. Miltenberger and M. L. Klebig, Combined effects of insulin treatment and adipose tissuespecific agouti expression on the development of obesity, Proceedings of the National Academy of Sciences of the United States of America, 94, 919 (1997). https://doi.org/10.1073/pnas.94.3.919
  41. G. T. Kucera, D. M. Bortner and M. P. Rosenberg, Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants, Developmental Biology, 173, 162 (1996). https://doi.org/10.1006/dbio.1996.0014
  42. S. R. Smith, B. Gawronska-Kozak and L. Janderova, Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes, Diabetes, 52, 2914 (2003). https://doi.org/10.2337/diabetes.52.12.2914
  43. B. D. Wilson, M. M. Ollmann, L. Kang, M. Stoffel, G. I. Bell and G. S. Barsh, Structure and function of ASP, the human homolog of the mouse agouti gene, Human Molecular Genetics, 4, 223 (1995). https://doi.org/10.1093/hmg/4.2.223
  44. H. Y. Kwon, S. J. Bultman and C. Loffler, Molecular structure and chromosomalmapping of the human homolog of the agouti gene, Proceedings of the National Academy of Sciences of the United States of America, 91, 9760 (1994). https://doi.org/10.1073/pnas.91.21.9760
  45. A. M. Ingalls, M. M. Dickie and G. D. Snell, Obese, a new mutation in the house mouse, The Journal of Heredity, 41, 317 (1950).
  46. K. P. Hummel, M. M. Dickie and D. L. Coleman, Diabetes, a new mutation in the mouse, Science, 153, 1127 (1966). https://doi.org/10.1126/science.153.3731.11
  47. H. Chen, O. Charlat and L. A. Tartaglia, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice, Cell, 84, 491 (1996). https://doi.org/10.1016/S0092-8674(00)81294-5
  48. L. Herberg and D. L. Coleman, Laboratory animals exhibiting obesity and diabetes syndromes, Metabolism, 26, 59 (1977). https://doi.org/10.1016/0026-0495(77)90128-7
  49. H. S. Jurgens, A. Schurmann and R. Kluge, Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice, Physiological Genomics, 25, 234 (2006).
  50. W. Suzuki, S. Iizuka and M. Tabuchi et al, A new mouse model of spontaneous diabetes derived from ddY strain, Exp. Anim, 48, 181 (1999). https://doi.org/10.1538/expanim.48.181
  51. I. Hirayama, Z. Yi and S. Izumi, Genetic analysis of obese diabetes in the TSOD mouse, Diabetes, 48, 1183 (1999). https://doi.org/10.2337/diabetes.48.5.1183
  52. S. Iizuka, W. Suzuki and M. Tabuchi, Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity, Experimental Animals, 54, 71 (2005). https://doi.org/10.1538/expanim.54.71
  53. M. F. Allan, E. J. Eisen and D. Pomp, The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity, Obesity Research, 12, 1397 (2004). https://doi.org/10.1038/oby.2004.176
  54. M. Nakamura and K. Yamada, Studies on a diabetic (KK) strain of the mouse, Diabetologia, 3, 212 (1967). https://doi.org/10.1007/BF01222198
  55. M. Igel, B. A. Taylor, S. J. Phillips,W. Becker, L. Herberg and H. G. Joost, Hyperleptinemia and leptin receptor variant Asp600Asn in the obese, hyperinsulinemic KKmouse strain, Journal of Molecular Endocrinology, 21, 337 (1998). https://doi.org/10.1677/jme.0.0210337
  56. H. Ikeda, KK mouse, Diabetes Research and Clinical Practice, 24, S313 (1994). https://doi.org/10.1016/0168-8227(94)90268-2
  57. M. Okazaki, Y. Saito and Y. Udaka, Diabetic nephropathy in KK and KK-A mice, Experimental Animals, 51, 191 (2002). https://doi.org/10.1538/expanim.51.191
  58. A.A. Butler and R.D. Cone, The melanocortin receptors: lessons from knockout models, Neuropeptides, 36, 77 (2002). https://doi.org/10.1054/npep.2002.0890
  59. O. Reizes, J. Lincecum and Z. Wang, Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3, Cell, 106, 105 (2001). https://doi.org/10.1016/S0092-8674(01)00415-9
  60. L. M. Zucker and T. F. Zucker, Fatty, a new mutation in the rat, Journal of Heredity, 52, 275 (1961).
  61. G. A. Bray, The Zucker fatty rat: a review, Federation Proceedings, 36, 148 (1977).
  62. J. E. Friedman, J. E. De Vente, R. G. Peterson and G. L. Dohm, Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa), American Journal of Physiology, 261, 782 (1991).
  63. H. Ikeda, A. Shino, T. Matsuo, H. Iwatsuka and Z. Suzuoki, A new genetically obese-hyperglycemic rat (Wistar fatty), Diabetes, 30, 1045 (1981). https://doi.org/10.2337/diab.30.12.1045
  64. G. Imai, T. Satoh and T. Kumai, Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-${\beta}1$, Hypertension Research, 26, 339 (2003). https://doi.org/10.1291/hypres.26.339
  65. H. Matsui, M. Suzuki, R. Tsukuda, K. Iida, M. Miyasaka and H. Ikeda, Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically obese diabetic rat, Wistar fatty, Diabetes Research and Clinical Practice, 32, 1 (1996). https://doi.org/10.1016/0168-8227(96)01209-0
  66. L. N. Berti-Mattera, J. Lowery, S. F. Day, R. G. Peterson and J. Eichberg, Alteration of phosphoinositide metabolism, protein phosphorylation, and carbohydrate levels in sciatic nerve fromWistar fatty diabetic rats, Diabetes, 38, 373 (1989). https://doi.org/10.2337/diab.38.3.373
  67. K. Kawano, T. Hirashima, S. Mori and T. Natori, OLETF (Otsuka Long-Evans Tokushima fatty) rat: a new NIDDM rat strain, Diabetes Research and Clinical Practice, 24, S317 (1994). https://doi.org/10.1016/0168-8227(94)90269-0
  68. D. Jia, M. Taguchi and M. Otsuki, Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats, Metabolism, 54, 619 (2005). https://doi.org/10.1016/j.metabol.2004.12.005
  69. N. L. Bodkin, J. S. Hannah, H. K. Ortmeyer and B. C. Hansen, Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance and hypertriglyceridemia?, International Journal of Obesity, 17, 53 (1993).
  70. B. C. Hansen and N. L. Bodkin, Primary prevention of diabetes mellitus by prevention of obesity in monkeys, Diabetes, 42, 1809 (1993). https://doi.org/10.2337/diab.42.12.1809
  71. J. W. Kemnitz, Obesity in macaques: spontaneous and induced, Advances in Veterinary Science and Comparative Medicine, 28, 81 (1984). https://doi.org/10.1016/B978-0-12-039228-5.50009-7
  72. W. A. Banks, J. Altmann, R. M. Sapolsky, J. E. Phillips-Conroy and J. E. Morley, Serum leptin levels as a marker for a syndrome X-like condition in wild baboons, Journal of Clinical Endocrinology and Metabolism, 88, 1234 (2003). https://doi.org/10.1210/jc.2002-021695
  73. T. Takahashi, A. Higashino and K. Takagi, Characterization of obesity in Japanese monkeys (Macaca fuscata) in a pedigreed colony, Journal of Medical Primatology, 35, 30 (2006). https://doi.org/10.1111/j.1600-0684.2005.00138.x
  74. M.D. Hand, P.J. Armstrong and T.A. Allen, Obesity: occurrence, treatment and prevention, The Veterinary Clinics of North America, 19, 447 (1989).
  75. K. Lindblad-Toh, C.M. Wade and T.S. Mikkelsen, Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 438, 803 (2005). https://doi.org/10.1038/nature04338
  76. A.T. Edney and P.M. Smith, Study of obesity in dogs visiting veterinary practices in the United Kingdom, The Veterinary Record, 118, 391 (1986). https://doi.org/10.1136/vr.118.14.391

Cited by

  1. 고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전 vol.31, pp.1, 2014, https://doi.org/10.12925/jkocs.2014.31.1.101