Abstract
The shape of a conventional full spade rudder has been modified to implement the Coanda effect and consequential changes in the flow characteristics are carefully examined to show the significant enhancement in the lift performance. A preliminary numerical study has been done to identify the optimum configuration of the modified rudder sections. For the purpose, chord wise locations of the jet slit and the radii of the trailing edge were varied in several ways and the changes in the lift characteristics have been observed at the various angles of attack, particularly focusing on the usefulness of the Coanda effect upon delaying the stall or increase in the circulation. Making the most use of the results so attained, full spade rudder of a VLCC has been reformed to realize the Coanda effect. A series of model experiments and numerical simulations are performed to confirm the effectiveness of the Coanda effect in improving the performance of the modified rudder. It is found that considerable enhancement in the lift performance of the rudder is plausible at any rudder angle if an optimum jet momentum is provided.