DOI QR코드

DOI QR Code

Mechanical and Electrical Properties of Electrospun CNT/PVDF Nanofiber for Micro-Actuator

미세-작동기를 위한 전기방사 CNT/PVDF 나노섬유 기반의 탄소 복합재의 기계적 및 전기적 특성 평가

  • 구가영 (경상대학교 나노.신소재공학부 대학원) ;
  • 왕작가 (경상대학교 나노.신소재공학부 대학원) ;
  • 권동준 (경상대학교 나노.신소재공학부 대학원) ;
  • 박종만 (경상대학교 나노.신소재공학부, 공학연구원)
  • Received : 2012.10.02
  • Accepted : 2013.02.13
  • Published : 2013.02.28

Abstract

The electrospun PVDF containing CNT was made for fabricating materials of the actuator. The electrochemical and their actuating movement were evaluated for the actuator performance in the electrochemical environment. The actuator (which was fabricated by electrospinning) had some advantages, i.e., good dispersion and flexible properties. In the electrospinning process, the final product would have different forms based on different essential factors. In this work, electrospun nanofibers were aligned by using the drum-type collector, and the morphology was identified via the field emission-scanning electron microscope (FE-SEM). The uniform dispersion of CNT in PVDF nanofiber was observed by electron probe X-ray micro-analysis (EPMA) test. The results of tensile strength and electrical resistivity provided the aligned state. The electrospun CNT/PVDF nanofiber sheet on the aligned direction showed better mechanical and electrical properties than the case of the vertically-aligned direction. The efficiency and electrical capacities of electrospun CNT/PVDF nanofiber sheets were compared with the cast PVDF sheet for actuator application. Electrospun CNT/PVDF nanofiber sheet exhibited much better the case of actuator performance than cast neat PVDF actuator, due to the excellent electrical connecting areas.

CNT를 포함하는 전기방사된 PVDF를 작동기 제조의 소재로 사용하였다. 기계적, 전기적특성과 함께 작동기 성능을 평가하기 위해 전기화학적 환경 내에서 전기화학 및 작동기 거동을 조사하였다. 전기방사된 시트의 특징 중 하나인 유연함을 가지며 분산이 잘 되어 접촉면이 많은 이점이 있기 때문에 작동기 제작방법으로 적합하다고 생각되었다. 전기방사는 여러 가지 요인들로 방사형태가 각각 다르게 나타났다. 본 연구에서는 콜렉터를 드럼형태를 사용하여 방사된 나노섬유의 방향성을 가지게 하였으며 형태를 확인하기 위해 전자현미경을 통해 나노섬유가 정렬된 형상을 확인하였다. 전자침 X-ray 미세분석기를 사용하여 PVDF내에 CNT가 함침 되어 나노섬유가 정렬 된 상태를 확인하였으며, 이러한 형태가 미치는 기계적, 전기적 물성에 영향을 평가하기 위해 인장시험을 통해 인장강도와 전기 저항도를 측정하였다. 정렬된 방향의 나노섬유 시트가 정렬의 직각 방향의 시트보다 상대적으로 기계적 그리고 전기적 물성이 좋게 나타났다. 전기방사된 CNT/PVDF 나노섬유 시트가 작동기로 사용 되었을 때 캐스팅으로 제작된 PVDF 시트의 작동기보다 좋은 효율을 확인하기 위해 전기화학적 환경 내에서 작동기 시험을 진행하여, 작동기 효율과 전기적 용량을 측정하였다. 전기방사된 CNT/PVDF 나노섬유 시트는 CNT와 PVDF간의 접촉면이 많기 때문에, 우수한 작동성을 나타내었다.

Keywords

References

  1. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., and Smith, J., "Ionic polymer-metal composites(IPMC) as biomimetic sensors, actuators and artificial muscles - a review," Smart Materials and Structures, Vol. 7, No. 6, 1998, pp. 15-30. https://doi.org/10.1088/0964-1726/7/6/001
  2. Shahinpoor, M., and Kim, K.J., "Ionic polymer-metal composites: I. Fundamentals", Smart Materials and Structures, Vol. 10, No. 4, 2001, pp. 819-833. https://doi.org/10.1088/0964-1726/10/4/327
  3. Kim, H.I., Kim, D.K., and Han, J.H., "A study on mechanical propertied of IPMC actuator," Jonrnal of the korean society for composite materials, Vol.20, No. 3, 2007, pp. 50-54.
  4. Choi, B.K., and Lee, W.H., "A study on the energy harvesting system using piezoelectric direct effect of piezo film," Jonrnal of the korean society for precision engineering, Vol. 25, No. 9, 2008, pp. 78-85.
  5. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator," Jonrnal of the korean society for composite materials, Vol. 24, No. 6, 2011, pp. 12-16. https://doi.org/10.7234/kscm.2011.24.6.012
  6. Thostenson, E.T., Ren, Z., and Chou, T.W., "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites Science and Technology, Vol. 61, No. 13, 2001, pp. 1899-912. https://doi.org/10.1016/S0266-3538(01)00094-X
  7. Che, J., Cagin, T., and Goddard, W.A., "Thermal conductivity of carbon nanotubes," Nanotechnology, Vol. 11, No. 2, 2000, pp. 65-73. https://doi.org/10.1088/0957-4484/11/2/305
  8. Bennett, M.D., and Leo, D.J., "Ionic liquids as stable solvents for ionic polymer transducers," Sensor and Actuators A, Vol. 115, No. 1, 2004, pp. 79-90. https://doi.org/10.1016/j.sna.2004.03.043
  9. Onishi, K., Sewa, S., Asaka, K., Fujiwara, N., and Oguro, K., "Morphology of electrodes and bending response of the polymer electrolyte actuator," Electrochimica Acta, Vol. 46, No. 5, 2000, pp. 737-743.
  10. Luqman, M., Lee, J.W., Moon, K.K., and Yoo, Y.T., "Sulfonated polystyrene-based ionic polymer.metal composite (IPMC) actuator," Journal of Industrial and Engineering Chemistry, Vol. 17, No. 1, 2011, pp. 49-55. https://doi.org/10.1016/j.jiec.2010.10.008
  11. Man, M.J., Park, J.H., Lee, J.Y., and Jho, J.Y., "Ionic polymer-Metal composite actuators employing radiation-grafted fluoropolymers as ion-exchange membranes," Macromolecular Rapid Communications, Vol. 27, No. 3, 2006, pp. 219-222. https://doi.org/10.1002/marc.200500694
  12. Lee, J.W., Kim, J.H., Goo, N.S., Lee, J.Y., and Yoo, Y.T., "Ion-conductive poly(vinyl alcohol)-based IPMCs," Journal of Bionic Engineering, Vol. 7 No. 1, 2010, pp. 19-28.
  13. Noh, T.G., Tak, Y., Nam, J.D., and Choi, H., "Electrochemical characterization of polymer actuator with large interfacial area," Electrochimica Acta, Vol. 47, No. 13-14, 2002, pp. 2341-2346. https://doi.org/10.1016/S0013-4686(02)00089-0
  14. Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna S., "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites Science and Technology, Vol. 63, No. 15, 2003, pp. 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  15. Choi, S.W., Jo, S.M., Lee, W.S., and Kim, Y.R., "An electrospun poly(vinylidene fluoride) nanofibrous membrane and Its battery applications," Advanced Materials, Vol. 15, No. 23, 2003, pp. 2027-2032. https://doi.org/10.1002/adma.200304617
  16. Rana, S., and Cho, J.W., "Core-sheath polyurethane-carbon nanotube nanofibers prepared by electrospinning," Fibers and Polymers, Vol. 12, No. 6, 2011, pp. 721-726. https://doi.org/10.1007/s12221-011-0721-0

Cited by

  1. Crystallization and mechanical behavior of the ferroelectric polymer nonwoven fiber fabrics for highly durable wearable sensor applications vol.346, 2015, https://doi.org/10.1016/j.apsusc.2015.03.173
  2. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation vol.87, 2015, https://doi.org/10.1088/1757-899X/87/1/012078
  3. Characteristics Analysis of Nano-composites Films Using Extruder vol.28, pp.2, 2016, https://doi.org/10.5764/TCF.2016.28.2.101
  4. A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites vol.27, pp.6, 2014, https://doi.org/10.7234/composres.2014.27.6.219