DOI QR코드

DOI QR Code

Finite Element Analysis for the Design of Fiber Reinforced Metal Cylinder

강/복합재 이중구조 실린더 설계를 위한 유한요소 해석

  • 김태환 (부산대학교 항공우주공학과 항공우주공학전공 대학원) ;
  • 김위대 (부산대학교 항공우주공학과) ;
  • 정철곤 (현대위아 주식회사)
  • Received : 2012.09.21
  • Accepted : 2013.01.15
  • Published : 2013.02.28

Abstract

This paper describes the design of dual-structured and thick-walled cylinder made of composites and special steel. The structure of special steel and composites reduce the weight of a product maintaining its property which is proper to the characteristics. Hence they are used in the fields, such as various ground weapons, aerospace and sports industries, where high elasticity and low weight are required. Thus in this study, the analysis was conducted to find the most proper composite application method changing its types and angle of laminates for the design. Through the comparison of the results, we suggest the method for composite application which is the most appropriate to the designing purpose of this study.

본 연구에서는 특수강과 복합재료를 사용한 이중구조 실린더의 설계를 위한 해석에 대해서 기술하였다. 특수강과 복합재의 이중구조는 제품의 특성에 적합한 물성을 유지하면서도 무게를 절감해 줄 수 있으며, 이로 인해 고탄성 저중량을 필요로 하는 각종 지상무기 산업분야와 항공분야, 스포츠 관련 분야 등에 점차 확대 적용되고 있다. 따라서 본 연구에서는 하나의 설계에 복합재의 적층각, 종류 등을 바꾸어 가며 이중구조의 설계에 가장 적합한 복합재 적용 방법을 찾기 위해 해석을 실시하였다. 또한 해석의 결과 값들의 비교를 통해 본 연구 설계목표에 가장 알맞은 복합재 적용 방법을 제시하였다.

Keywords

References

  1. Parker, A.P., "A Re-Autofrettage Procedure for Mitigation of Bauschinger Effect in Thick Cyliders," Journal of Pressure Vessel Technology, Vol. 126, No. 4, 2004, pp. 451-454. https://doi.org/10.1115/1.1806446
  2. Hojjati, M.H., and Hassani, A., "Theoretical and finite-element modeling of autofrettage process in strain-hardening thick-walled cylinders," International Journal of Pressure Vessels and Piping, Vol. 84, No. 5, 2007, pp. 310-319. https://doi.org/10.1016/j.ijpvp.2006.10.004
  3. Kim, J.H., Shim, W.S., Lee, Y.S., Cha, G.U., and Hong, S.K., "A Study on Residual Stress Analysis of Autofrettaged Thick-walled Cylinders," Journal of the Korean Society of Precision Engineering, Vol. 26, No. 12, 2009, pp. 110-116.
  4. Park, J.H., Lee, Y.S., Kim, J.H., Cha, G.U., and Hong, S.K., "Machining Analysis of the Autofrettaged Compound Cylinder," The Korean Society of mechanical engineers A, Vol. 31, No. 7, 2007, pp. 800-807. https://doi.org/10.3795/KSME-A.2007.31.7.800
  5. Lee, K.K., and Kim, W.D., "Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method," The Korean Society for Composite Materials, Vol. 24, No. 2, 2011, pp. 22-29. https://doi.org/10.7234/kscm.2011.24.2.022
  6. Tabakov, P.Y., and Summers, E.B., "Lay-up optimization of multilayered anisotropic cylinders based on a 3-D elasticity solution," Computers and Structures, Vol. 84, No. 5-6, 2006, pp. 374-384. https://doi.org/10.1016/j.compstruc.2005.09.023
  7. Jacquemin, F., and Vautrin, A., "Analytical Calculatiion of the Transient Thermoelastic Stresses in Thick Walled Composite Pipes," Journal of Composite Materials, Vol. 38, No. 19, 2004, pp. 1773-1751.
  8. Jones, R.M., Mechanics of Composite Materials, International student ed., McGraw-Hill Kogakusha, LTD., 1975.
  9. Whitney, J.M., Structural Analysis of Laminated Anisotropic Plates, Technomic Pub. Co., 1987.
  10. Lee, K.K., and Kim, W.D., "Thermo-structural analysis and design of 3D composite rocket nozzle," Proceeding of Spring Conference The Korean Society for Composite Materials, 2010, pp. 147-151.
  11. Kim, C.Y., and Kim, W.D., "Analysis of Steel/composite Cylinder by GUI Program," The Korean Society for Composite Materials, Vol. 25, No. 4, 2012, pp. 126-132. https://doi.org/10.7234/kscm.2012.25.4.126