DOI QR코드

DOI QR Code

Study of the Correlation of Plasma Resonance and the Refractive Index to Dielectric Dispersion in the Complex Plane

  • Zhou, Xiao-Yong (Department of Optical Science and Engineering, Fudan University) ;
  • Shen, Yan (Department of Optical Science and Engineering, Fudan University) ;
  • Hu, Er-Tao (Department of Optical Science and Engineering, Fudan University) ;
  • Chen, Jian-Bo (Department of Optical Science and Engineering, Fudan University) ;
  • Zhao, Yuan (Department of Optical Science and Engineering, Fudan University) ;
  • Sheng, Ming-Yu (Department of Optical Science and Engineering, Fudan University) ;
  • Li, Jing (Department of Optical Science and Engineering, Fudan University) ;
  • Zheng, Yu-Xiang (Department of Optical Science and Engineering, Fudan University) ;
  • Zhao, Hai-Bin (Department of Optical Science and Engineering, Fudan University) ;
  • Chen, Liang-Yao (Department of Optical Science and Engineering, Fudan University) ;
  • Li, Wei (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Jiang, Xun-Ya (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) ;
  • Lee, Young-Pak (Department of Physics, Hanyang University) ;
  • Lynch, David W. (Department of Physics, Iowa State University)
  • Received : 2012.10.30
  • Accepted : 2012.12.17
  • Published : 2013.02.25

Abstract

Based on the dispersive feature of the dielectric function of noble metals and the wave vector conservation in physics, both the plasma effect and the complex refractive index, which are profoundly correlated to the complex dielectric function and permeability, have been studied and analyzed. The condition to induce a bulk or a surface plasma in the visible region will not be satisfied, and there will be one solution for the real and the imaginary parts of the refractive index, restricting it only to region I of the complex plane. The results given in this work will aid in understanding the properties of light transmission at the metal/dielectric interface as characterized by the law of refraction in nature.

Keywords

References

  1. J. W. Shirley, "An early experimental determination of Snell's law," Am. J. Phys. 19, 507-508 (1951). https://doi.org/10.1119/1.1933068
  2. S. A. Kovalenko, "Descartes-Snell law of refraction with absorption," Semiconductor Physics, Quantum Electronics & Optoelectronics 4, 214-218 (2001).
  3. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).
  4. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of $\varepsilon$ $and\mu$," Sov. Phys. Uspekhi 10, 509-514 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699
  5. H. Shin and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. lett. 96, 073907 (2006). https://doi.org/10.1103/PhysRevLett.96.073907
  6. R. A. Depine and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Technol. Lett. 41, 315-316 (2004). https://doi.org/10.1002/mop.20127
  7. G. Dolling, M. W. Klein, M. Wegener, A. Schadle, B. Kettner, S. Burger, and S. Linden, "Negative beam displacements from negative-index photonic metamaterials," Opt. Express 15, 14219-14227 (2007). https://doi.org/10.1364/OE.15.014219
  8. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
  9. T. P. Meyrath, T. Zentgraf, and H. Giessen, "Lorentz model for metamaterials: optical frequency resonance circuits," Phys. Rev. B 75, 205102 (2007). https://doi.org/10.1103/PhysRevB.75.205102
  10. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008). https://doi.org/10.1038/nature07247
  11. M. Wegener, G. Dolling, and S. Linden, "Plasmonics: backward waves moving forward," Nature Materials 6, 475-476 (2007). https://doi.org/10.1038/nmat1926
  12. F. Wooten, Optical Properties of Solids (Academic Press, New York and London, 1972).
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  14. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  15. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol. 88 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1980).
  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1988).
  17. F. Forstmann and R. R. Gerhardts, Metal Optics, Vol. 109 of Springer Tracts in Modern Physics (Springer Verlag, Berlin, Germany, 1986).
  18. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, "Optical properties of Au: sample effects," Phys. Rev. B 21, 3290- 3299 (1980). https://doi.org/10.1103/PhysRevB.21.3290
  19. G. R. Parkins, W. E. Lawrence, and R. W. Christy, "Intraband optical conductivity $\sigma$($\omega$,T) of Cu, Ag, and Au: contribution from electron-electron scattering," Phys. Rev. B 23, 6408-6416 (1981). https://doi.org/10.1103/PhysRevB.23.6408
  20. L. Y. Chen and D. W. Lynch, "Effect of liquids on the Drude dielectric function of Ag and Au films," Phys. Rev. B 36, 1425-1431 (1987). https://doi.org/10.1103/PhysRevB.36.1425
  21. T. Turbadar, "Complete absorption of light by thin metal films," Proc. Phys. Soc. Lond. 73, 41-44 (1959).
  22. T. Turbadar, "Complete absorption of plane polarized light by thin metallic films," J. Mod. Opt. 11, 207-210 (1964).
  23. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Physik 216, 398-410 (1968). https://doi.org/10.1007/BF01391532
  24. E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971). https://doi.org/10.1007/BF01395428
  25. J. L. Garcia-Pomar and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12, 2081-2095 (2004). https://doi.org/10.1364/OPEX.12.002081
  26. V. M. Shalaev, "Optcal negative-index metamaterials," Nature Photonics 1, 41-48 (2007). https://doi.org/10.1038/nphoton.2006.49
  27. M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002). https://doi.org/10.1088/0143-0807/23/3/314
  28. R. A. Depine and A. Lakhtakia, "A simple and efficient approach to train artificial neural networks using a genetic algorithm to calculate the resonant frequency of an RMA on thick substrate," Microwave Opt. Technol. Lett. 41, 315-316 (2004). https://doi.org/10.1002/mop.20127
  29. A. V. Kildishev, V. P. Drachev, U. K. Chettiar, D. Werner, D. H. Kwon, and V. M. Shalaev, comment at (2006).
  30. J. Wei and M. Xiao, "Electric and magnetic losses and gains in determining the sign of refractive index," Opt. Commun. 270, 455-464 (2007). https://doi.org/10.1016/j.optcom.2006.09.039
  31. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., New York, USA, 1999).
  32. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, New York, USA, 1984).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, UK, 1985).