DOI QR코드

DOI QR Code

Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar

FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현

  • Hong, Dan-Bee (Department of Marine Environmental System Science, University of Science & Technology) ;
  • Yang, Chan-Su (Department of Marine Environmental System Science, University of Science & Technology)
  • 홍단비 (과학기술연합대학원대학교 해양환경시스템과학과) ;
  • 양찬수 (과학기술연합대학원대학교 해양환경시스템과학과)
  • Received : 2012.09.17
  • Accepted : 2013.02.15
  • Published : 2013.02.25

Abstract

This study focuses on a ship detection and tracking method using Frequency Modulated Continuous Wave (FMCW) radar used for horizontal surveillance. In general, FMCW radar can play an important role in maritime surveillance, because it has many advantages such as low warm-up time, low power consumption, and its all weather performance. In this paper, we introduce an effective method for data and signal processing of ship's detecting and tracking using the X-band radar. Ships information was extracted using an image-based processing method such as the land masking and morphological filtering with a threshold for a cycle data merged from raw data (spoke data). After that, ships was tracked using search-window that is ship's expected rectangle area in the next frame considering expected maximum speed (19 kts) and interval time (5 sec). By using this method, the tracking results for most of the moving object tracking was successful and those results were compared with AIS (Automatic Identification System) for ships position. Therefore, it can be said that the practical application of this detection and tracking method using FMCW radar improve the maritime safety as well as expand the surveillance coverage cost-effectively. Algorithm improvements are required for an enhancement of small ship detection and tracking technique in the future.

본 연구에서는 FMCW 레이더를 이용해 수평적인 해상 감시를 위한 선박 탐지 및 추적 기법을 개발하였다. FMCW레이더는 일반적으로 웜업(warm-up) 시간이 짧고 날씨나 대기상태에 영향을 받지 않으며 가볍고 사용 편의성이 높기 때문에 해상 감시 분야에서 중요한 역할을 할 수 있다. 본 논문에서는 X-밴드 FMCW 레이더의 데이터 처리 기법과 선박 탐지 및 추적 알고리듬 구현 결과를 소개한다. 선박 탐지는 원시자료(spoke)에서 합성된 프레임 데이터를 사용하여 육지부분을 제거한 후 형태학적 처리 기법을 이용한 임계치가 적용되었다. 선박의 추적은, 선박의 예상 최대선속(19 kn)과 프레임간의 시간간격(5 sec)을 고려하여 다음 프레임에서의 선박의 위치를 예상하는 탐색창(search-window)을 사용하였다. 평택항에서 실시된 실험에서 실제 운항중인 다섯 척의 선박이 사용되었으며, 이중 25 m 이상인 선박의 경우 완벽하게 탐지되었고, 소형 어선의 경우 평균적으로 85.38%의 탐지율을 보였다. 어선의 낮은 탐지율은 부이 주변을 항해할 때 주로 발생하였으며, 재질이 유리섬유강화플라스틱(FRP)이며 선박 높이가 낮은 것이 원인으로 판단된다. 추적기법에 의한 결과와 선박자동식별장치(Automatic Identification System) 비교를 통해 각 선박의 추적은 잘 이루어진 것으로 확인되었으며, 추적률은 평균적으로 95.12%이었으며, 길이 25 m 이상 선박의 추적률은 100%이었다. 향후 소형어선에 대한 탐지와 추적기법 향상을 위한 알고리듬 개선이 요구된다.

Keywords

References

  1. Benfold, B. and Reid, I., June 2011, "Stable Multi-Target Tracking in Real-Time Surveillance Video", Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 3457-3464.
  2. Chaturvedi, S.K., Yang, C.S., Ouchi, K., and Shanmugam, P., April 2012, "Ship Recognition by Integration of SAR and AIS", The Journal of Navigation, Vol.65, No.2, 323-337. https://doi.org/10.1017/S0373463311000749
  3. Corda, S., and Bell, G., December 2009, "NavRadar NRP Class Description", Technical Paper of Navico Auckland Limited.
  4. Corda, S., December 2009, "PPI Class Description", Technical Paper of Navico Auckland Limited.
  5. EMSA, 2011, EMSA Annual Report.
  6. Guerriero, M., Willett, P., Coraluppi, S., and Carthel, C., July 2008, "Radar/AIS Data Fusion and SAR Tasking for Maritime Surveillance", Information Fusionk, 2008 11th International Conference on, 1-5.
  7. Hoseinnezhad, R., Vo, B.N., Vo, B.T., and Suter, D., October 2012, "Visual Tracking of Numerous Targets via Multi-Bernoulli Filtering of Image Data", Pattern Recognition, Vol.45, No.10, 3625-3635. https://doi.org/10.1016/j.patcog.2012.04.004
  8. Hwang, S.K., 2007, IT EXPERT Programing of Image Processing by Visual C++, Hanbit media, Inc., 778-779.
  9. Inacio, F.R., and Raybaud, A., December 2007, "Multispectral Target Detection and Tracking for Seaport Video Surveillance", Proceedings of the Image and Vision Computing New Zealand, 169-174.
  10. Khan, R., Gamberg, B., Power, D., Walsh, J., Dawe, B., Pearson, W., and Millan, D., October 1994, "Target Detection and Tracking with a High Frequency Ground Wave Radar", Oceanic Engineering, IEEE Journal of, Vol.17, No.4, 540-548.
  11. Kim, K.H., Ko, K.E., Kang, J.S., and Sim, K.B., February 2011, "Specified Object Tracking in an Environment of Multiple Moving Object using Particle Filter", Journal of Korean Institute of Intelligent Systems, Vol.21, 106-111. https://doi.org/10.5391/JKIIS.2011.21.1.106
  12. Lee, D.J., August 2008, "Real-time Position Tracking of Traffic Ships by ARPA Radar and AIS in Busan Harbor, Korea", The Korean Society of Fisheries Technology, Vol.44, No.3, 229-238. https://doi.org/10.3796/KSFT.2008.44.3.229
  13. Mecocci, A., Benelli, G., Garzelli, A., and Bottalico, S., March 1995, "Radar Image Processing for Ship-Traffic Control", Image and Vision Computing, Vol.13, No.2, 119-128. https://doi.org/10.1016/0262-8856(95)93153-J
  14. Mun, S.M., and Son, J.Y., May 2011, "Current Activities of Navigation & Communication Equipment Industry and R&D", Journal of the Korean society of marine engineering, Vol.35, No.4, 512-518. https://doi.org/10.5916/jkosme.2011.35.4.512
  15. Meng, L., and Kerekes, J.P., February 2012, "Object Tracking Using High Resolution Satellite Imagery", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, Vol.5, No.1, 146-152. https://doi.org/10.1109/JSTARS.2011.2179639
  16. Seibert, M., Rhodes, B.J., Bomberger, N.A., Beane, P.O., and Srokal, J.J., April 2006, "SeeCoast Port Surveillance", Proceedings of SPIE Vol. 6204: Photonics for Port and Harbor Security II.
  17. Stove, A.G., October 1992, "Linear FMCW Radar Technique", Radar and Signal Processing IEE PROCEEDINGS-F, Vol.139, No.5, 343-350.
  18. Yang, M., 2008, Context-aware and Attentional Visual Object Tracking, Ph.D. Dissertation, Northwestern University.

Cited by

  1. Classification of Passing Vessels Around the Ieodo Ocean Research Station Using Automatic Identification System (AIS): November 21-30, 2013 vol.17, pp.4, 2014, https://doi.org/10.7846/JKOSMEE.2014.17.4.297
  2. A Study on Reliability Improvement of RALT for KUH through Fault Analysis vol.42, pp.5, 2014, https://doi.org/10.5139/JKSAS.2014.42.5.406