• Title/Summary/Keyword: Ship tracking

Search Result 179, Processing Time 0.031 seconds

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

A Study on the DBS Receive Tracking Antenna Apparatus on a Ship by the Az/El Mount (Az/El 마운트에 의한 선박용 DBS 수신추적안테나 장치에 관한 연구)

  • 최조천;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • DBS offers actual services to mass-media and communication system of very broad region in information society. Especially, the DBS is the only system to access TV broadcasting service on a sailing ship. But the ship's DBS receiver is required a complex antenna tracking system because ships are under complex moving such as pitch, roll, and yaw etc. This study is motivated to develop a tracking antenna system to receive the koreasat on small silo ship. Therefore, this system is researched to small size, light weight, simple operation, and low cost of the product. The mount structure have been a compact size and easy operation to the Az/El 2-axis type which is operated by step motor. And it is very useful on a ship in the around sea of korean peninsula. The antenna has a plate type of micro-strip array, and is a domestic production. The vibration sensor is selected to gyro sensor of ultra-sonic rate type for ship's moving control. Tracking method is used the step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Tracking test is operated by the ship's moving simulator, we examined the actual receiving state on sailing shipboard in the near sea of korean peninsular.

  • PDF

A Ship Control System in the Berthing Phase

  • Bui, Van Phuoc;Kim, Young-Bok;Choi, Kwang-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.349-354
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and performance robustness with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

  • PDF

Design of Sliding Mode Controller for Ship Position Control (선박위치제어를 위한 슬라이딩모드 제어기 설계)

  • Bui, Van Phuoc;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing by using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and robust performance with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

Design of Multi-mode Tracking Algorithm for DBS Receiving Antenna on Shipboard

  • Choi, Choel;Kim, Young-Ho;Lee, Sung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.3-121
    • /
    • 2001
  • The movement of a ship is important for DBS(Direct Broadcasting Satellite) Receiving Antenna control algorithm design on shipboard. Especially, turning of ship is essential factor to affect the angle change of azimuth and elevation. Therefore, to track the satellite stably, we need the tracking method considering turning rate of ship. In this paper, we propose an effective satellite tracking algorithm for DBS receiving antenna on shipboard. In the proposed method, when a ship is turned, it selects one of the Multi tracking modes - Normal mode, Low speed mode, Middle speed mode and High speed mode - according as turning rate to be calculated by using Gyro sensor.

  • PDF

Yaw Angle Command Generation and Adaptive Fuzzy Control for Automatic Route Tracking of Ships (선박자동항로 추적을 위한 회두각 명령의 생성과 적응 퍼지제어)

  • 이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.199-208
    • /
    • 2001
  • In this paper, an automatic route tracking algorithm using the position variables and the yaw angle of a ship is suggested, Since most autopilot systems paly only a role of course-keeping by integrating the gyrocompass output, they cannot cope with position errors between the desired route and real route of the ship resulted from a drifting and disturbances such as wave, wind and currents during navigation. In order for autopilot systems to track the desired route, a method which can reduce such position errors is required and some algorithms have been proposed[1,2]While such were turned out effective methods, they have a shortage that the rudder control actions for reducing the position errors are occurred very frequently. In order to improve this problem it is necessary to convert that error into the corresponding yaw angle and necessary to treat only yaw angle control problem. To do this a command generation algorithm which converts the rudder angle command reducing the current position error into they yaw angle command is suggested. To control the ship under disturbances and nonlinearities of the ship dynamics, the adaptive fuzzy controller is developed. Finally, through computer simulations for two ship models, the effectiveness of the suggested method and the possibility of the automatic route tracking are assured.

  • PDF

Design of Automatic Ship Maneuvering Control System (선박 자동 운항 제어기의 설계)

  • Kwak Moon Kyu;Suh Sang-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.90-101
    • /
    • 1999
  • This paper is concerned with the design of automatic ship maneuvering system including automatic path tracking controller and automatic berthing controller. The optimal control technique is employed to design the automatic path tracking controller, which is based on the linearized equations of ship motion. The numerical example shows that the automatic path tracking controller is capable of tracking the line between way points which are determined by pilot a priori. The decentralized control technique is employed to design the automatic berthing controller. In addition to the automatic path tracking controller, the fuzzy logic controller is used to control the forward speed. The numerical example shows that the automatic berthing controller can be successfully implemented.

  • PDF

A study on the tracking antenna system for DBS receive on a ship (선박용 DBS수신 추적안테나 시스템의 구현)

  • 최조천;양규식;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2236-2245
    • /
    • 1997
  • The DBS system is being highlighted as actual area for the information societics. Specially, the DBS have been proposed very useful system to access the broading service in more widely sea. But the antenna tracking system for maritime DBS receiving is requried complicated control system because of the those complex motion represented pitching, rolling and yowing etc. Our resesrch target is a development of tracking system to the KOREASEA(MUGUNGWHA-1,2) for the applicated small size shipping. So our development focus was concentrated the two development direction. The first focus was represented low-cost system for popularization of small-size shipping around sea of the Korea peninsula. The second focus was an adaptive possibilities with domestic eqdupiment which was developed satellite receiving for KOREASAT. The anntenna mount is designed a compact size and easy operation use to the Az/El 2-axis type which is operated by step motor. And this mount type is very useful on a ship in the near sea of Korea peninsula. Basic tracking method is used th step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Control part is consists of converter, countertime, VCO, micro-computer and it's software. Testing the operation by the ship's moving simulator, and algorithm is designed tracking and moving compensation by receiving state.

  • PDF