DOI QR코드

DOI QR Code

Computational Study on the Dependence of Electronic Transition Energies of Porphin, Chlorin, Mg-Chlorin and Chlorophyll a on an External Charge

  • Kwon, Jang Sook (Department of Chemistry, Chungbuk National University) ;
  • Yang, Mino (Department of Chemistry, Chungbuk National University)
  • Received : 2012.10.28
  • Accepted : 2012.11.13
  • Published : 2013.02.20

Abstract

In phtosynthetic light harvesting complexes, the electronic transition energies of chlorophylls are influenced by the Coulombic interaction with nearby molecules. Variation of the interactions caused by structural inhomogeneity in biological environment results in a distribution of disordered electronic transition energies of chlorophylls. In order to provide a practical guide to predict qualitative tendency of such distribution, we model four porphyrin derivatives including chlorophyll a molecule interacting with an external positive charge and calculate their transition energies using the time dependent density functional method. It is found that ${\pi}-{\pi}^*$ transition energies of the molecules are generally blue-shifted by the charge because this stabilizes occupied molecular orbitals to a greater extent than unoccupied ones. Furthermore, new transitions in the visible region emerge as a result of the red-shift in energy of an unoccupied Mg orbital and it is suggested that light-induced electron transfer may occur from the tetrapyrrole ring to the central magnesium when the molecules are interacting with a positive charge.

Keywords

References

  1. Hajjaj, F.; Yoon, Z. S.; Yoon, M.-C.; Park, J.; Satake, A.; Kim, D.; Kobuke, Y. J. Am. Chem. Soc. 2006, 128, 4612. https://doi.org/10.1021/ja0583214
  2. Lim, J. M.; Yoon, Z. S.; Shin, J.-Y.; Kim, K. S.; Yoon, M.-C.; Kim, D. Chem. Comm. 2009, 261.
  3. Maximiano, R. V. et al. J. Photochem. Photobiol. A-Chem. 2010, 214, 115. https://doi.org/10.1016/j.jphotochem.2010.06.007
  4. Stenuit, G.; Castellarin-Cudia, C.; Plekan, O.; Feyer, V.; Prince, K. C.; Goldoni, A.; Umari, P. Phys. Chem. Chem. Phys. 2010, 12, 10812. https://doi.org/10.1039/c004332j
  5. Linnanto, J.; Korppi-Tommola, J. Phys. Chem. Chem. Phys. 2006, 8, 663. https://doi.org/10.1039/b513086g
  6. Vokácová, Z.; Burda, J. V. J. Phys. Chem. A 2007, 111, 5864. https://doi.org/10.1021/jp071639t
  7. Qu, Z.-W.; Zhu, H.; May, V.; Schinke, R. J. Phys. Chem. B 2009, 113, 4817.
  8. Nemykin, V. N.; Hadt, R. G. J. Phys. Chem. A 2010, 114, 12062. https://doi.org/10.1021/jp1083828
  9. König, C.; Neugebauer, J. ChemPhysChem. 2012, 13, 386. https://doi.org/10.1002/cphc.201100408
  10. Kaila, V. R. I.; Send, R.; Sundholm, D. J. Phys. Chem. B 2011, 116, 2249.
  11. Yang, M.; Damjanovi, A.; Vaswani, H. M.; Fleming, G. R. Biophys. J. 2003, 85, 140. https://doi.org/10.1016/S0006-3495(03)74461-0
  12. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138. https://doi.org/10.1016/0022-2852(61)90236-3
  13. Gouterman, M.; Wagnière, G. H.; Snyder, L. C. J. Mol. Spectrosc. 1963, 11, 108. https://doi.org/10.1016/0022-2852(63)90011-0
  14. Parusel, A. B. J. J. Photochem. Photobiol. B-Biol. 2000, 55, 188. https://doi.org/10.1016/S1011-1344(00)00048-8
  15. Erkoc, S. and Erkoc, F. J. Mol. Struct.-Theochem. 2002, 579, 41. https://doi.org/10.1016/S0166-1280(01)00707-2
  16. Sundholm, D. Phys. Chem. Chem. Phys. 2003, 5, 4265. https://doi.org/10.1039/b306301a
  17. Valiev, R. R.; Cherepanov, V. N.; Artyukhov, V. Y.; Sundholm, D. Phys. Chem. Chem. Phys. 2012, 14, 11508. https://doi.org/10.1039/c2cp40468k
  18. Palummo, M.; Hogan, C.; Sottile, F.; Bagala, P.; Rubio, A. J. Chem. Phys. 2009, 131, 084102. https://doi.org/10.1063/1.3204938
  19. Fukuda, R.; Ehara, M.; Nakatsuji, H. J. Chem. Phys. 2010, 133, 144316. https://doi.org/10.1063/1.3491026
  20. Chaudhuri, R. K.; Freed, K. F.; Chattopadhyay, S.; Mahapatra, U. S. J. Chem. Phys. 2011, 135, 084118. https://doi.org/10.1063/1.3627153
  21. Sundholm, D. Chem. Phys. Lett. 1999, 302, 480. https://doi.org/10.1016/S0009-2614(99)00194-3
  22. Sundholm, D. Chem. Phys. Lett. 2000, 317, 545. https://doi.org/10.1016/S0009-2614(99)01428-1
  23. Sundholm, D. Phys. Chem. Chem. Phys. 2000, 2, 2275. https://doi.org/10.1039/b001923m
  24. Sundholm, D. Chem. Phys. Lett. 2000, 317, 392. https://doi.org/10.1016/S0009-2614(99)01422-0
  25. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  26. Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. https://doi.org/10.1021/ja00523a008
  27. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. https://doi.org/10.1063/1.444267
  28. Frisch, M. J. et al. (Gaussian, Inc., Pittsburgh, PA, 2003).
  29. Konig, C.; Neugebauer, J. Phys. Chem. Chem. Phys. 2011, 13, 10475. https://doi.org/10.1039/c0cp02808h
  30. Edwards, L.; Dolphin, D. H.; Gouterman, M.; Adler, A. D. J. Mol. Spectrosc. 1971, 38, 16. https://doi.org/10.1016/0022-2852(71)90090-7
  31. Eisner, U.; Linstead, R. P. J. Chem. Soc. (Resumed) 1955, 3742. https://doi.org/10.1039/jr9550003742
  32. Houssier, C.; Sauer, K. J. Am. Chem. Soc. 1970, 92, 779. https://doi.org/10.1021/ja00707a007