DOI QR코드

DOI QR Code

Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes

  • Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Bae, Young-San (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Lee, Kyung-Ho (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Song, Jin-Woo (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Min, Jeong-Hye (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kim, Jong-Seon (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Ko, Hyun-Seok (POSCO ES Materials) ;
  • Paik, Younkee (Korean Basic Science Institute) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
  • Received : 2012.08.27
  • Accepted : 2012.11.07
  • Published : 2013.02.20

Abstract

Fluorine-doping on the $Li_{1+x}Mn_{1.9-x}Al_{0.1}O_4$ spinel cathode materials is found to alter crystal shape, and enhance initial interfacial reactivity and solid electrolyte interphase (SEI) formation, leading to improved initial coulombic efficiency in the voltage region of 3.3-4.3 V vs. Li/$Li^+$ in the room temperature electrolyte of 1 M $LiPF_6$/EC:EMC. SEM imaging reveals that the facetting on higher surface energy plane of (101) is additionally developed at the edges of an octahedron that is predominantly grown with the most thermodynamically stable (111) plane, which enhances interfacial reactivity. Fluorine-doping also increases the amount of interfacially reactive $Mn^{3+}$ on both bulk and surface for charge neutrality. Enhanced interfacial reactivity by fluorine-doping attributes instant formation of a stable SEI layer and improved initial cyclic efficiency. The data contribute to a basic understanding of the impacts of composition on material properties and cycling behavior of spinel-based cathode materials for lithium-ion batteries.

Keywords

References

  1. Ohzuku, T.; Kitagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137, 769. https://doi.org/10.1149/1.2086552
  2. Hunter, J. C. J. Solid State Chem. 1981, 39, 142. https://doi.org/10.1016/0022-4596(81)90323-6
  3. Gummow, R. J.; Kock, A. de; Thackeray, M. M. Solid State Ionics 1994, 69, 59. https://doi.org/10.1016/0167-2738(94)90450-2
  4. Tarascon, J.-M.; Coowar, F.; Amatucci, G. G.; Shokoohi, F. K.; Guyomard, D. G. J. Power Sources 1995, 54, 103. https://doi.org/10.1016/0378-7753(94)02048-8
  5. Son, H.-Y.; Lee, M.-Y.; Ko, H.-S.; Lee, H. J. Korean Electrochem. Soc. 2011, 14, 131. https://doi.org/10.5229/JKES.2011.14.3.131
  6. Myung, S.-T.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2001, 148, A482. https://doi.org/10.1149/1.1365140
  7. Bakenov, Z.; Taniguchi, I. Solid State Ionics 2005, 176, 1027. https://doi.org/10.1016/j.ssi.2005.02.004
  8. Xia, Y.; Zhang, Q.; Wang, H.; Nakamura, H.; Noguchi, H.; Yoshio, M. Electrochim. Acta 2007, 52, 4708. https://doi.org/10.1016/j.electacta.2007.01.004
  9. Song, J.-W.; Nguyen, C. C.; Choi, H.; Lee, K.-H.; Han, K.-H.; Kim, Y.-J.; Choy, S.; Song, S.-W. J. Electrochem. Soc. 2011, 158, A458. https://doi.org/10.1149/1.3556638
  10. Kang, Y.-J.; Kim, J.-H.; Sun, Y.-K. J. Power Sources 2005, 146,237.
  11. Choi, W.; Manthiram, A. Solid State Ionics 2007, 178, 1541. https://doi.org/10.1016/j.ssi.2007.10.003
  12. Feng, C.; Li, H.; Zhang, C.; Guo, Z.; Wu, H.; Tang, J. Electrochim. Acta 2012, 61, 87. https://doi.org/10.1016/j.electacta.2011.11.090
  13. Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J.-M. J. Electrochem. Soc. 2001, 148, A171. https://doi.org/10.1149/1.1342168
  14. Yonezawa, S.; Yamasaki, M.; Takashima, M. J. Fluorine Chem. 2004, 125, 1657. https://doi.org/10.1016/j.jfluchem.2004.09.004
  15. Oh, S. W.; Park, S. H.; Kim, J. H.; Bae, Y. C.; Sun, Y. K. J. Power Sources 2006, 157, 464. https://doi.org/10.1016/j.jpowsour.2005.07.056
  16. Stroukoff, K. R.; Manthiram, A. J. Mater. Chem. 2011, 21, 10165. https://doi.org/10.1039/c0jm04228e
  17. He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C. Solid State Ionics 2005, 176, 2571. https://doi.org/10.1016/j.ssi.2005.07.012
  18. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, version 3.5. http://srdata.nist.gov/xps/ (accessed July 2012).
  19. Shannon, R. D. Acta Cryst. A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551
  20. Huang, M.-R.; Lin, C.-W.; Lu, H.-Y. Appl. Surf. Sci. 2001, 177,103. https://doi.org/10.1016/S0169-4332(01)00205-7
  21. Rougier, A.; Striebel, K. A.; Wen, S. J.; Richardson, T. J.; Reade, R. P.; Cairns, E. J. Appl. Surf. Sci. 1998, 134, 107. https://doi.org/10.1016/S0169-4332(98)00234-7
  22. Socrates, G. Infrared Characteristic Group Frequencies, 2nd ed.; John Wiley & Sons: New York, 1994.
  23. Zhuang, G. V.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2003, 6, A136. https://doi.org/10.1149/1.1575594
  24. Song, S.-W.; Zhuang, G. V.; Ross, P. N., Jr. J. Electrochem. Soc. 2004, 151, A1162. https://doi.org/10.1149/1.1763771
  25. Yang, H.; Zhuang, G. V.; Ross, P. N., Jr. J. Power Sources 2006, 161, 573. https://doi.org/10.1016/j.jpowsour.2006.03.058

Cited by

  1. Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications vol.11, pp.4, 2013, https://doi.org/10.3390/coatings11040456