DOI QR코드

DOI QR Code

Efficient Extraction of Bioethanol from Freshwater Cyanobacteria Using Supercritical Fluid Pretreatment

  • Pyo, Dongjin (Department of Chemistry, Kangwon National University) ;
  • Kim, Taemin (Department of Chemistry, Kangwon National University) ;
  • Yoo, Jisun (Department of Chemistry, Kangwon National University)
  • Received : 2012.09.04
  • Accepted : 2012.11.06
  • Published : 2013.02.20

Abstract

For the production of ethanol from freshwater cyanobacteria, a new pretreatment method using supercritical fluid was introduced. In this study, it was found that the supercritical fluid could penetrate inside the cell wall and help to liberate starch from cyanobacterial cells which resulted in the increase of the efficiency of ethanol production. For Microcystis aeruginosa, supercritical fluid pretreatment increased the amount of ethanol produced from cyanobacteria from 1.53 g/L to 2.66 g/L. For Anabaena variabilis, the amount of ethanol was increased from 1.25 g/L to 2.28 g/L. With use of supercritical fluid pretreatment, the efficiency of the process to obtain higher ethanol yields from freshwater cyanobacteria was improved upto 80%. The optimum temperature and pressure conditions for supercritical fluid pretreatment were determined as the temperature of $40^{\circ}C$ and the pressure of 120 atm. This study demonstrates the feasibility of using supercritical fluid pretreatment for ethanol production using freshwater cyanobacteria.

Keywords

References

  1. Amin, S. Erg convers Manage. 2009, 50, 1834. https://doi.org/10.1016/j.enconman.2009.03.001
  2. Schell, D. J.; Riley, C. J.; Dowe, D.; Farmer, J.; Ibsen, K. N.; Ruth, M. F.; Toon, S. T.; Lumpkin, R. E. Bioresour. Technol. 2004, 91,179. https://doi.org/10.1016/S0960-8524(03)00167-6
  3. Lin, Y.; Tanaka, S. Appl. Microbiol. Biotechnol. 2006, 69, 627. https://doi.org/10.1007/s00253-005-0229-x
  4. Milne, T. A.; Evans, R. J.; Nagle, N. T. A.; Milne, R. J.; Evans, N.; Biomass 1990, 21, 219. https://doi.org/10.1016/0144-4565(90)90066-S
  5. Ginzburg, B. Z. Renew Erg. 1993, 3, 249. https://doi.org/10.1016/0960-1481(93)90031-B
  6. Dote, Y.; Sawayama, S.; Inoue, S.; Minowa, T.; Yokoyama, S. Y. Fuel 1994, 73, 1855. https://doi.org/10.1016/0016-2361(94)90211-9
  7. Minowa, T.; Yokoyama, S. Y.; Kishimoto, M.; Okakurat, T. Fuel 1995, 74, 1735. https://doi.org/10.1016/0016-2361(95)80001-X
  8. Chorus, I., Bartram, J., Eds.; Toxic Cyanobacteria in Water; E & FN SPON Press: London, 1999; p 88.
  9. Carmichael, W. W. J. Appl Bacteriol. 1992, 72, 445. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  10. Cho, K. S.; Kim, B. C.; Heo, W. M.; Cho, S. Kor. J. Limnol. 1989, 22, 179.
  11. Maurcio, A.; Rostagno, M. A.; Julio, A.; Sandi, D. Food Chem. 2002, 78, 111. https://doi.org/10.1016/S0308-8146(02)00106-1
  12. Mendiola, J. A.; Santoyo, S.; Ibanez, E.; Reglero, G.; Señoráns, F. J.; Cifuentes A.; Jaime, L. Food Chem. 2007, 102, 1357. https://doi.org/10.1016/j.foodchem.2006.06.068
  13. Miller, G. L. Anal. Chem. 1959, 31, 426. https://doi.org/10.1021/ac60147a030
  14. Dwi, S.; Hirata, K.; Asada, Y.; Miyamoto, K. Microbiol. Biotechnol. 2001, 17, 259. https://doi.org/10.1023/A:1016638619700
  15. Lang, N. J. Rev. Microbiol. 1968, 22, 15. https://doi.org/10.1146/annurev.mi.22.100168.000311
  16. Brunberg, A. K.; Bostrom, B. Hydrobiologia 1992, 235, 375. https://doi.org/10.1007/BF00026227
  17. Bouchard, A.; Jovanovic, N.; Hofland, G. W.; Jiskoot, W.; Mendes, E.; Crommelin, D. J. A.; Witcamp, G. J. Pharm. Biopharm. 2008, 68, 781. https://doi.org/10.1016/j.ejpb.2007.06.019
  18. Jovanovic, N.; Bouchard, A.; Hofland, G. W.; Jiskoot, W.; Mendes, E.; Crommelin, D. J. A.; Witcamp, G. J. Pharm. Sci. 2006, 27,336.
  19. Pyo, D. J. Biochem. Biophys. Methods 2000, 43, 113. https://doi.org/10.1016/S0165-022X(00)00051-8

Cited by

  1. Choice of Pretreatment Technology for Sustainable Production of Bioethanol from Lignocellulosic Biomass: Bottle Necks and Recommendations pp.1877-265X, 2019, https://doi.org/10.1007/s12649-017-0177-6
  2. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels vol.34, pp.13, 2013, https://doi.org/10.1080/09593330.2013.831487
  3. Cyanobacteria as an eco‐friendly resource for biofuel production: A critical review vol.35, pp.5, 2013, https://doi.org/10.1002/btpr.2835
  4. Bioenergy production usingTrichormus variabilis- a review vol.13, pp.5, 2013, https://doi.org/10.1002/bbb.2023
  5. A two‐enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets vol.104, pp.1, 2013, https://doi.org/10.1111/jpn.13239