DOI QR코드

DOI QR Code

리프팅 기반 이산 웨이블렛 변환의 디지트 시리얼 VLSI 구조

Digit-serial VLSI Architecture for Lifting-based Discrete Wavelet Transform

  • 류동훈 (가톨릭대학교 정보통신전자공학부) ;
  • 박태근 (가톨릭대학교 정보통신전자공학부)
  • Ryu, Donghoon (Department of Information, Communication, and Electronic Engineering, The Catholic University of Korea) ;
  • Park, Taegeun (Department of Information, Communication, and Electronic Engineering, The Catholic University of Korea)
  • 투고 : 2012.10.15
  • 발행 : 2013.01.25

초록

본 논문에서는 리프팅 기반 일차원 (9,7) 이산 웨이블렛 변환(Discrete Wavelet Transform, DWT) 필터에 대한 효율적인 디지트 시리얼 VLSI 구조를 제안하였다. 제안한 구조는 연산을 디지트 단위로 처리하여 하드웨어 자원 소모량을 줄이고 승산기를 단순한 쉬프트와 덧셈 연산으로 대체하여 하드웨어를 최소화하였다. 적절한 데이터 비트할당을 위하여 PSNR을 분석하였고 이에 따라 입 출력 및 내부 데이터에 대한 비트를 정하였다. recursive folding 방식의 스케줄링을 적용할 때에 피드백에 의한 데이터 레이턴시로 인한 성능저하가 되지 않도록 설계하였다. 제안된 구조는 디지트 시리얼 구조를 통해 적은 하드웨어 자원을 사용하면서 100% 하드웨어 효율을 유지할 수 있도록 설계함으로써 하드웨어 비용과 성능을 동시에 고려하였다. 제안된 구조는 VerilogHDL로 모델링 하여 검증하였고 Synopsys사의 Design Compiler로 동부하이텍 0.18um 표준 셀 라이브러리를 사용하여 합성하였으며 2 input NAND 게이트 기준 3,770개의 게이트 수와 최대 동작주파수 330MHz의 결과를 얻었다.

In this paper, efficient digit-serial VLSI architecture for 1D (9,7) lifting-based discrete wavelet transform (DWT) filter has been proposed. The proposed architecture computes the DWT in digit basis, so that the required hardware is reduced. Also, the multiplication is replaced with the shift and add operation to minimize the hardware requirement. Bit allocation for input, output, and the internal data has been determined by analyzing the PSNR. We have carefully designed the data feedback latency not to degrade the performance in the recursive folded scheduling. The proposed digit-serial architecture requires small amount of hardware but achieve 100% of hardware utilization, so we try to optimize the tradeoffs between the hardware cost and the performance. The proposed architecture has been designed and verified by VerilogHDL and synthesized by Synopsys Design Compiler with a DongbuHitek $0.18{\mu}m$ STD cell library. The maximum operating frequency is 330MHz with 3,770 gates in equivalent two input NAND gates.

키워드

참고문헌

  1. S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. and Machine Intell., vol.11, no.7, pp.674-693, 1989. https://doi.org/10.1109/34.192463
  2. R. Martinet, J. Morlet, and A. Grossmann, "Analysis of sound patterns through wavelet transforms," Int, J. Pattern Recognition and Artificial intelligence, vol.1, no.2, pp.273-302, 1987. https://doi.org/10.1142/S0218001487000205
  3. I. Daubechies and W. Sweldens, "Factoring Wavelet Transforms into Lifting Steps," the Journal of Fourier Analysis and Applications, Vol.4, Issue 3, pp.247-269, 1998. https://doi.org/10.1007/BF02476026
  4. G. Dillen, B. Georis, J. Legat, and O. Cantineau, "Combined Line-Based Architecture for the 5-3 and 9-7 Wavelet Transform of JPEG2000," IEEE Trans. Cir. and Sys. for Video Technology, Vol.13, No.9, pp.944-950, 2003. https://doi.org/10.1109/TCSVT.2003.816518
  5. C. Liu, Y. Shiau, and J. Jou, "Design and Implementation of a Progressive Image Coding Chip Based on the Lifted Wavelet Transform," in Proc. of the 11th VLSI Design/CAD Symposium, 2000.
  6. J. Jou, Y. Shiau, and C. Liu, "Efficient VLSI Architectures for the Biorthogonal Wavelet Transform by Filter Bank and Lifting Scheme," in IEEE ISCAS pp.529-533, 2001.
  7. C. Lian, K. Chen, H. Chen, and L. Chen, "Lifting Based Discrete Wavelet Transform Architecture for JPEG2000," in IEEE ISCAS, pp. 445-448, 2001.
  8. C. Hsieh, T. Tsai and C. Lai, "Implementation of an Efficient DWT Using a FPGA on a Real-time Platform," in IEEE ICICIC, pp. 235-235, 2007.
  9. G. Shi, W. Liu, L. Zhang, and F. Li, "An Efficient Folded Architecture for Lifting-Based Discrete Wavelet Transform," IEEE Trans. Cir. and Sys. II, vol. 56, no. 4, pp. 290-294, 2009. https://doi.org/10.1109/TCSII.2009.2015393
  10. W. Chang, Y. Lee, W. Peng, and C. Y. Lee, "A Line-Based, Memory Efficient and Programmable Architecture for 2D DWT Using Lifting Scheme", in IEEE ISCAS, pp.330-333, 2001.
  11. C. Huang, P. Tseng, and L. Chen, "Flipping Structure: An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform," in IEEE Trans. on Signal Processing, pp.1080-1089, 2004.
  12. C. Wang, Z. Wu, P. Cao, and J. Li, "An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform," IEEE International Conference on Multimedia and Expo, pp.1575-1578, 2007.
  13. K. Andra, C. Chakrabarti, and T. Acharya, "A VLSI Architecture for Lifting-Based Forward and Inverse Wavelet Transform," IEEE Trans. on Signal Processing, vol.50, no.4, pp.966-977, 2002. https://doi.org/10.1109/78.992147
  14. M. Vishwanath, "The Recursive Pyramid Algorithm for the Discrete Wavelet Transform," in IEEE Trans. on Signal Processing, vol.42, pp.673-676, 1994.
  15. H. Liao, M. Mandal, and B. Cockburn, "Novel Architectures for Lifting-Based Discrete Wavelet Transform," in Electronics Letters, vol.38, no.18, pp.1010-1012, 2002. https://doi.org/10.1049/el:20020707
  16. K. Parhi, "VLSI digital signal processing systems," Wiley-Interscience, 1999.
  17. T. Acharya and C. Chakrabarti. "A survey on lifting-based discrete wavelet transform architectures," J. VLSI Signal Process., vol. 42, no. 3, pp. 321-339, 2006. https://doi.org/10.1007/s11266-006-4191-3