DOI QR코드

DOI QR Code

Biological conversion of CO2 to CH4 in anaerobic fixed bed reactor under continuous operation

혐기성 고정층 생물반응기의 연속운전을 통한 이산화탄소의 메탄전환

  • Kim, Jaehyung (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Koo, Hyemin (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Chang, Wonseok (District Heating Technology Research Institute, Korea District Heating Corp) ;
  • Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science)
  • 김재형 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 구혜민 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 장원석 (한국지역난방공사 기술연구소) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원 에너지환경공학과)
  • Received : 2013.10.05
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

This study was carried out to examine different mole ratio of $H_2/CO_2$ and EBCT using the continuous system in the lab scale throughout biological methods with accumulated hydrogenotrophic methanogen that can convert $CO_2$ to $CH_4$. The experimental-based results with various gas mixtures of mole ratio of 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$), $H_2$ was converted more than 99% conversion rate. In case of $CO_2$, 4:1($H_2/CO_2$) and 5:1($H_2/CO_2$) were $74.45{\pm}0.33%$, $95.8{\pm}10.7%$, respectively, in addition, the study was confirmed that the amount of $H_2$ was more needed than stoichiometric equations, where approach methods are empirical versus theoretical frameworks, for converting total $CO_2$. As such, we have noticed that $H_2$ was used for energy source of hydrogenotrophic methanogen for maintaining life. Regarding the results of the ratio of treatment by retention time, limitation of treatment capacity showed that $H_2$(99.9%) and $CO_2$(96.23%) at EBCT 3.3 hrs indicated stable conversion ratio, as well as appeared that methane production rate and $CO_2$ fixation rate were investigated $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$ and $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$, respectively.

생물학적방법으로 이산화탄소를 에너지원인 메탄으로 전환하고자 hydrogenotrophic methanogen이 우점화된 실험실규모의 연속운전 반응기를 이용하여 수소의 주입비율과 EBCT에 따른 실험을 진행하였다. 수소와 이산화탄소의 주입비율을 4:1과 5:1(mol/mol)로 달리한 실험결과 두 조건 모두 주입된 수소가 대부분 소모되며 99% 이상의 전환율을 보였다. 이산화탄소의 경우 4:1에서는 $74.45{\pm}0.33$%, 5:1에서는 $95.8{\pm}10.7%$의 전환율로 이산화탄소를 모두 전환시키기 위해서는 양론식에 비해 더 많은 양의 수소가 필요한 것으로 확인되었다. 이는 hydrogenotrophic methanogen의 생장유지에 필요한 에너지원인 수소가 사용된 것에 기인한 것으로 사료된다. 체류시간별로 처리효율을 확인한 결과, 임계처리용량은 EBCT 3.3시간에서 수소(99.9%)와 이산화탄소(96.23%)의 안정적인 전환율을 보이며 $1.15{\pm}0.02m^3{\cdot}m^{-3}{\cdot}day^{-1}$의 메탄생산속도와 $2.01{\pm}0.04kg{\cdot}m^{-3}{\cdot}day^{-1}$의 이산화탄소 고정화속도를 나타내었다.

Keywords

References

  1. S. Solomon et al., E. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 2007.
  2. Lashof, D. A.; Ahuja, D. R. Relative Contributions of Greenhouse Gas Emissions to Global Warming. Nature 1990, 344, 529-531. https://doi.org/10.1038/344529a0
  3. B. Metz , O. Davidson , H. de Coninck, M. Loos, L. Meyer, Carbon Dioxide Capture and Storage. Special Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 2005.
  4. Omae, I. Aspects of Carbon Dioxide Utilization. Catal. Today 2006, 115, 33-52. https://doi.org/10.1016/j.cattod.2006.02.024
  5. Riduan, S. N.; Zhang, Y. Recent Developments in Carbon Dioxide Utilization Under Mild Conditions. Dalton Trans. 2010, 39, 3347-57. https://doi.org/10.1039/b920163g
  6. Otsuki, T. A Study for the Biological CO2 Fixation and Utilization System. Sci. Total Environ. 2001, 277, 21-25. https://doi.org/10.1016/S0048-9697(01)00831-2
  7. Moroney, J.; Somanchi, A. How Do Algae Concentrate CO2 to Increase the Efficiency of Photosynthetic Carbon Fixation? Plant Physiol. 1999, 119, 9-16. https://doi.org/10.1104/pp.119.1.9
  8. Chaumont, D. Biotechnology of Algal Biomass Production: a Review of Systems for Outdoor Mass Culture. J. Appl. Phycol. 1993, 5, 593-604. https://doi.org/10.1007/BF02184638
  9. Chen, C. Y.; Yeh, K. L.; Aisyah, R.; Lee, D. J.; Chang, J. S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
  10. Ferry, J. G. Biochemistry of Methanogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473-503. https://doi.org/10.3109/10409239209082570
  11. Demirel, B.; Scherer, P. The Roles of Acetotrophic and Hydrogenotrophic Methanogens During Anaerobic Conversion of Biomass to Methane: a Review. Rev. Environ. Sci. Bio/Technology 2008, 7, 173-190. https://doi.org/10.1007/s11157-008-9131-1
  12. Bryant, M. P.; McBride, B. C.; Wolfe, R. S. Hydrogen-Oxidizing Methane Bacteria. I. Cultivation and Methanogenesis. J. Bacteriol. 1968, 95, 1118-23.
  13. Langenberg, K. F.; Bryant, M. P.; Wolfe, R. S. Hydrogen-Oxidizing Methane Bacteria. II. Electron microscopy. J. Bacteriol. 1968, 95, 1124-1129.
  14. Qiu, Y.-L.; Hanada, S.; Ohashi, A.; Harada, H.; Kamagata, Y.; Sekiguchi, Y. Syntrophorhabdus Aromaticivorans Gen. Nov., Sp. Nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen. Appl. Environ. Microbiol. 2008, 74, 2051-2058. https://doi.org/10.1128/AEM.02378-07
  15. Ako, O. Y.; Kitamura, Y.; Intabon, K.; Satake, T. Steady State Characteristics of Acclimated Hydrogenotrophic Methanogens on Inorganic Substrate in Continuous Chemostat Reactors. Bioresour. Technol. 2008, 99, 6305-6310. https://doi.org/10.1016/j.biortech.2007.12.016
  16. Qiu, Y.-L.; Sekiguchi, Y.; Hanada, S.; Imachi, H.; Tseng, I.-C.; Cheng, S.-S.; Ohashi, A.; Harada, H.; Kamagata, Y. Pelotomaculum Terephthalicum Sp. Nov. and Pelotomaculum Isophthalicum Sp. Nov. Two Anaerobic Bacteria That Degrade Phthalate Isomers in Syntrophic Association with Hydrogenotrophic Methanogens. Arch. Microbiol. 2006, 185, 172-182. https://doi.org/10.1007/s00203-005-0081-5
  17. Cadillo-Quiroz, H.; Yavitt, J. B.; Zinder, S. H. Methanosphaerula Palustris Gen. Nov., Sp. Nov., a Hydrogenotrophic Methanogen Isolated from a Minerotrophic Fen Peatland. Int. J. Syst. Evol. Microbiol. 2009, 59, 928-935. https://doi.org/10.1099/ijs.0.006890-0
  18. Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 2009, 43, 3953-8. https://doi.org/10.1021/es803531g
  19. Sato, K.; Kawaguchi, H.; Kobayashi, H. Bio-Electrochemical Conversion of Carbon Dioxide to Methane in Geological Storage Reservoirs. Energy Convers. Manag. 2013, 66, 343-350. https://doi.org/10.1016/j.enconman.2012.12.008
  20. Jeon, B. Y.; Kim, S. Y.; Park, Y. K.; Park, D. H. Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using an Electrochemical Bioreactor. J. Microbiol. Biotechnol. 2009, 19, 1665-71. https://doi.org/10.4014/jmb.0904.04002
  21. Ahring, B. K.; Ibrahim, A. A.; Mladenovska, Z. Effect of Temperature Increase from 55 to 65 Degrees C on Performance and Microbial Population Dynamics of an Anaerobic Reactor Treating Cattle Manure. Water Res. 2001, 35, 2446-2452. https://doi.org/10.1016/S0043-1354(00)00526-1
  22. Berg, I. a Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways. Appl. Environ. Microbiol. 2011, 77, 1925-1936. https://doi.org/10.1128/AEM.02473-10
  23. Hawkins, A. S.; McTernan, P. M.; Lian, H.; Kelly, R. M.; Adams, M. W. Biological Conversion of Carbon Dioxide and Hydrogen into Liquid Fuels and Industrial Chemicals. Curr. Opin. Biotechnol. 2013, 24, 376-384. https://doi.org/10.1016/j.copbio.2013.02.017
  24. Lee, J. C.; Kim, J. H.; Chang, W. S.; Pak, D. Biological Conversion of CO2 to CH4 Using Hydrogenotrophic Methanogen in a Fixed Bed Reactor. J. Chem. Technol. Biotechnol. 2012, 87, 844-847. https://doi.org/10.1002/jctb.3787
  25. Schill, N.; von Stockar, U. Thermodynamic Analysis of Methanobacterium Thermoautotrophicum. Thermochim. Acta 1995, 251, 71-77. https://doi.org/10.1016/0040-6031(94)02093-4
  26. Gerhard, E. Optimisation et etude calorimetrique de cultures de Methanobacterium thermoautotrophicum. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, 1991.
  27. Devinny, J. S.; Deshusses, M. A.; Webster, T. S. Biofiltration for Air Pollution Control; Lewis Publishers, U.S., 1998.
  28. Groenestijn, J. W.; Hesselink, P. G. M. Biotechniques for Air Pollution Control. Biodegradation 1994, 4, 283-301. https://doi.org/10.1007/BF00695975