DOI QR코드

DOI QR Code

고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion

  • 한삼희 (군산대학교 토목공학과) ;
  • 김종길 (호원대학교 토목환경공학과) ;
  • 박창규 (군산대학교 토목공학과)
  • 투고 : 2013.04.18
  • 심사 : 2013.09.17
  • 발행 : 2013.11.30

초록

고강도 콘크리트 보의 극한상태의 거동을 강도에 따라 연구하였다. 13개의 보를 해석하고 그 결과를 제시하였다. 변수는 콘크리트의 압축강도로 범위는 57~184 MPa이며, 횡방향 철근비로 범위는 0.35~1.49%이다. 실험에서 측정한 극한 비틀림 강도를 본 논문에서 제안한 값과 ACI 기준에 따른 값을 비교하였다. 그 결과 본 논문에서 제안한 이론에 의한 극한 비틀림 강도가 ACI 기준에 따른 값보다 더 좋은 결과를 보였다.

The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.

키워드

참고문헌

  1. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05)", American Concrete Institute, Farmington Hills, MI, 2005, p.443.
  2. Bredt., "Kritische Bemerkungen Zur Drehungselastizitat", Zeischrift des Vereines Deutscher Ingenieure, Vol. 40, No. 28, 1986, pp.785-790 and No. 29, 1986, pp.813-817.
  3. CEB-FIP, "Model Code 1990", Comite Euro-International du Beton, Lausanne, Switzland, 1990, p.461.
  4. CEN prEN 1992-1-1, "Eurocode 2: Design of Concrete Structures-Part 1: General Rules and Rules for Buildings", Brussels, Belgium, Apr. 2002, p.225.
  5. Hsu, Thomas T. C. and Mo, Y. L., "Softening of Concrete in Torsional Members-Design Recommendation", ACI Journal, Vol. 82, No. 4, 1985, pp.443-452.
  6. Hsu, Thomas T. C. and Mo, Y. L., "Softening of Concrete in Torsional Members-Prestressed", ACI Journal, Vol. 82, No. 5, 1985, pp.603-615.
  7. Hsu, Thomas T. C. and Mo, Y. L., "Softening of Concrete in Torsional Members-Theory and tests", ACI Journal, Vol. 82, No. 3, 1985, pp.228-234.
  8. Hsu, Thomas T. C., Torsion of Reinforced Concrete, Van Nostrand Reinhold Co., New York, 1984, p.544.
  9. Joo, G. Y., "Torsional Behavior of Steel Fiber Reinforced Concrete Beam", Thesis, Graduate School Kunsan National University, 2012 (in Korean).
  10. L. J. Rasmussen and G. Baker, "Torsion in Reinforced Normal and High-Strength Concrete Beams-Part 1: Experimental Test Series", ACI Structural Journal N0. 92-S7, January-Febuary, 1995.
  11. Norwegian Standards, "Concrete Structures, Design Rules", NS3473, Stockholm, Sweden, 1989, p.78.
  12. Standards Association of New Zealand, "Concrete Structures NZS 3101-Part 1 : Design", 1995, p.256.
  13. Standards Council of Canada, "Design of Concrete Structure for Buildings (CAN3-A23.3-04)", Canadian Standards Association, Mississanga, Canada, Dec. 2004, p.240.
  14. Vecchio, F. and Collins, M. P., "Stress-Strain Characteristics of Reinforced Concrete in Pure Shear", IABSE Colloquim Advanced Mechanics of Reinforced Concrete, Delft, Final Report, 1981, pp.211-225.