DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata

흰망태버섯 자실체의 메탄올 및 열수추출물의 항산화 및 항염증 활성

  • Nguyen, Trung Kien (Division of Life Sciences, Incheon National University) ;
  • Shin, Do Bin (Division of Life Sciences, Incheon National University) ;
  • Lee, Kyung Rim (Division of Life Sciences, Incheon National University) ;
  • Shin, Pyung Gyun (Mushroom Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cheong, Jong Chun (Mushroom Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yoo, Young Bok (Mushroom Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Min Woong (Department of Life Sciences, Dongguk University) ;
  • Jin, Ga-Heon (Department of Ophthalmic Optics, Shinheung University) ;
  • Kim, Hye Young (Department of Clinical Laboratory Science, Shinsung University) ;
  • Im, Kyung Hoan (Division of Life Sciences, Incheon National University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • ;
  • 신도빈 (인천대학교생명과학기술대학생명과학부) ;
  • 이경림 (인천대학교생명과학기술대학생명과학부) ;
  • 신평균 (원예특작과학원버섯과) ;
  • 정종천 (원예특작과학원버섯과) ;
  • 유영복 (원예특작과학원버섯과) ;
  • 이민웅 (동국대학교) ;
  • 진가헌 (신흥대학교안경과학과) ;
  • 김혜영 (신성대학교임상병리과) ;
  • 임경환 (인천대학교생명과학기술대학생명과학부) ;
  • 이태수 (인천대학교생명과학기술대학생명과학부)
  • Received : 2013.12.03
  • Accepted : 2013.12.30
  • Published : 2013.12.31

Abstract

Dictyophora indusiata is an edible mushroom belongs to Family Phallaceae of Phallales, Basidiomycota. The purpose of this study was to investigate the antioxidant and anti-inflammatory activities of methanol and hot water extracts prepared from fruiting bodies of Dictyophora indusiata. Besides measuring of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, a reducing power and a chelating activity on ferrous ions were also measured to evaluate the antioxidant activity for those extracts. To measure the anti-inflammatory activities for the extracts, nitric oxide(NO) production from lipopolysaccharide(LPS) treated RAW 264.7 macrophage cells and carrageenan-induced acute hind paw edema of rats were investigated. The results showed that the extracts have excellent DPPH scavenging and chelating activity on the ferrous ions compared with positive control. The nitric oxide(NO) production in LPS-stimulated RAW 264.7 macrophage cells were decreased as we increased the concentration of the mushroom extracts. Significant reduction of paw edema of rats were observed at 2~6 h after treatment of methanol and hot-water extracts with 50 mg/kg concentration to the rats which are induced acute hind paw edema by carrageenan administration. Therefore, the experimental results suggested that methanol and hot-water extracts of Dictyophora indusiata fruiting bodies might be used for natural sources of antioxidant and anti-inflammatory agents.

본 연구에서는 흰망태버섯의 자실체에서 메탄올과 열수를 이용해 추출한 물질의 항산화 및 항염증 효과를 탐색하였다. DPPH 라디칼 소거능, 환원력 및 철 이온제거능을 이용해 항산화 효과를 측정한 결과 양성대조군으로 사용한 BHT나 토코페롤에 비해 낮았지만 다른 종류의 버섯에 비해 효과가 우수한 것을 확인하였다. 철 이온을 제거하는 항산화 실험에서 흰망태버섯의 메탄올 추출물의 효과는 양성대조군인 BHT나 토코페롤에 비해 월등하게 높아서 흰망태버섯 자실체의 추출물은 높은 항산화 효과를 지닌 것으로 나타났다. 흰망태버섯의 염증저해 효과 실험에서는 배양 중인 RAW 264.7 대식세포에 흰망태버섯 자실체의 메탄올 및 열수추출물을 각각 전 처리 한 후 염증매개 물질인 LPS를 투여하여 추출물의 NO 생성 저해효과를 조사하였다. 실험 결과, 처리한 추출물의 농도가 증가함에 따라 생성된 NO의 양이 현저하게 감소하는 경향을 나타내었다. 또한 흰망태버섯의 추출물이 carrageenan에 의해 흰쥐의 뒷발에 유도된 부종 저해 실험에서는 투여한 추출물의 농도가 증가함에 따라 흰쥐의 뒷발에 유도된 부종의 용적도 농도 의존적으로 감소되었다. 따라서 흰망태버섯의 자실체에 함유된 물질은 항산화 및 소염증제로 이용이 가능하다고 사료되었다.

Keywords

References

  1. Weisburger, J. H. 1999. Mechanism of action of antioxidants as exemplified in vegetables, tomatoes, and tea. Food Chem. Toxicol. 37 : 943-948. https://doi.org/10.1016/S0278-6915(99)00086-1
  2. Ahn, E. K., Jeon H. J., Lim, E. J., Jung, H. J. and Park, E. H. 2007. Anti-inflammatory and anti-angiogenic activities of Gastrodia elata Blume. J. Enthnopharm. 110 : 476-482. https://doi.org/10.1016/j.jep.2006.10.006
  3. Park Y. M., Won, J. H., Kim, Y. H., Choi, J. W., Park, H. J. and Lee, K. T. 2005. In vivo and in vitro antiinflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharm. 101 : 120-128. https://doi.org/10.1016/j.jep.2005.04.003
  4. Gross R. L. and Newberne, P. M. 1980. Role of nutrition in immunologic function. Physiol. Rev. 60 : 188-302. https://doi.org/10.1152/physrev.1980.60.1.188
  5. Park, W. H. and Lee, H. D. 1997. Illustrated book of Korean medicinal mushrooms. Kyo-Hak Publishing Co., Ltd.. pp. 576. Seoul, Korea.
  6. Shim, S. M., Im, K. H., Kim, J. W., Shim, M. J., Lee, M. W. and Lee, T. S. 2003. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor. J. Mycol. 31 : 155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  7. Moreno, M. I. N., Isla, M. I., Sampietro, A. R. and Vattuone, M. A. 2000. Comparison of the free radicalscavenging activity of propolis from several region of Argentina. J. Enthnopharm. 71 : 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  8. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol. Meth. 65 : 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  9. Gulcin, I., Buyukokuroglu, M. E., Oktay, M. and Kufrevioglu. O. I. 2003. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. Pallsiana (Lamb.) Holmboe. J. Ethnopharmacol. 86 : 51-8 https://doi.org/10.1016/S0378-8741(03)00036-9
  10. Yena, G. C., Duhb, P. D. and Tsaia, L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79 : 307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
  11. Ryu J. H., Ahn H, Kim, J. Y. and Kim, Y. K. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17 : 485-489. https://doi.org/10.1002/ptr.1180
  12. Cho, Y. J. and Ahn, B. J. 2008. Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide stimulated Raw cells. J. Kor. Soc. Appl. Biol. Chem. 51 : 44-48.
  13. Winter, C. A., Risley, E. A. and Nuss, G. W. 1962. Carrageenan induced edema in the hind paw of rat as an assay for anti-inflammatory activit. Proc. Soc. Exp. Biol. Med. 111 : 544-547. https://doi.org/10.3181/00379727-111-27849
  14. Leong, L. P. and Shui, G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 76 : 69-75. https://doi.org/10.1016/S0308-8146(01)00251-5
  15. Choi, Y. M., Chang, W. B., Choi, S. Y., Choi, J. S., Noh, J. G., Song, I. K., Min, K. B. and Lee, J. S. 2008. Biological activities of Lyophyllum ulmarium extracts. J. Agri. Life Sci. 42 : 35-41.
  16. Lee Y. L., Huang. G. W., Liang, Z. C. and Mau J. L. 2007a. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT-Food Sci. Technol. 40 : 823-833. https://doi.org/10.1016/j.lwt.2006.04.002
  17. Tsai, S. Y., Huang, S. J, and Mau, J. L. 2006. Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 98 : 670-677. https://doi.org/10.1016/j.foodchem.2005.07.003
  18. Mau, J. L., Chang, C. N., Huang, S. J. and Chen, C. C. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta, and Termitomyces albuminosus mycelia. Food Chem. 87 : 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  19. Lee, Y. L., Yen, M. and Mau, J. L. 2007b. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem. 104 : 1-9. https://doi.org/10.1016/j.foodchem.2006.10.063
  20. Kang, H. W. 2012. Antioxidant and anti-inflammatory effects of extracts from Flammulina velutipes (Curtis) Singer. J. Kor. Soc. Food Nutr. 41 : 1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  21. Lim, J. H., Kim, S. H., Park, N. H., Moon, C. G., Kang, S. S., Kim, S. H., Shin, D. H. and Kim, J. C. 2010. Acute and chronic antiinflammatory effects of Phellinus linteus water extract in rats J. Biomed. Res. 11 : 27-35.

Cited by

  1. Antioxidant, Anti-diabetic, Anti-cholinesterase, and Nitric Oxide Inhibitory Activities of Fruiting Bodies of Agaricus brasiliensis vol.47, pp.4, 2015, https://doi.org/10.15324/kjcls.2015.47.4.194
  2. Mushroom Cosmetics: The Present and Future vol.3, pp.4, 2016, https://doi.org/10.3390/cosmetics3030022
  3. Free radical scavenging, anti-inflammatory and melannin synthesis inhibitory activities of Gloeostereum incarnatum vol.12, pp.2, 2014, https://doi.org/10.14480/JM.2014.12.2.107
  4. Comparison of Physicochemical Properties and Antioxidant Activities between Lentinula edodes and New Cultivar Lentinula edodes GNA01 vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1484
  5. In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.330
  6. Dectin-1 mediates the immunoenhancement effect of the polysaccharide from Dictyophora indusiata vol.109, 2018, https://doi.org/10.1016/j.ijbiomac.2017.12.113