DOI QR코드

DOI QR Code

복숭아 '장호원황도'의 엽위별 잎 발달과 광합성능의 변화에 대한 분석

Analysis on on the Leaf Growth and Changes of Photosynthetic Characterization by Leaf Position in 'Changhowon Hwangdo' Peach

  • 윤익구 (국립원예특작과학원 과수과) ;
  • 윤석규 (국립원예특작과학원 과수과) ;
  • 전지혜 (국립원예특작과학원 과수과) ;
  • 남은영 (국립원예특작과학원 과수과) ;
  • 권정현 (국립원예특작과학원 과수과) ;
  • 배해진 (국립원예특작과학원 과수과) ;
  • 문병우 (엠원예기술연구소) ;
  • 강희경 (공주대학교 원예학과)
  • 투고 : 2013.08.14
  • 심사 : 2013.10.24
  • 발행 : 2013.12.31

초록

전엽 후 10일이 경과하면 잎의 위치별 엽내 엽록소 함량에 큰 차이를 보이지 않았고, 전엽 후 10일이 경과되지 않은 잎의 엽록소 함량은 전엽 경과일수가 적을수록 낮았다. 동일한 잎의 위치에서 전엽 후 경과일수에 따른 엽록소 함량의 경시적 변화는 전엽 직후에 $2.56{\mu}g/cm^2$에서 12일째에는 $6.35{\mu}g/cm^2$까지 급격히 증가하고 이후 약 2개월간 완만한 증가 추세를 보였는데 엽록소 함량이 가장 높은 시기는 전엽 후 11주째로 $9.03{\mu}g/cm^2$이었다. 엽면적은 전엽 직후부터 전엽 후 10일까지 급속하게 증가하였으나 그 이후는 거의 변화가 없었다. 잎의 광합성률은 전엽 후 30일까지는 급격히 증가하여 전엽 30일 후에 $13.8{\mu}mol/m^{-2}/sec^{-1}$로 최대치를 보였으며, 이후에는 잎의 광합성능이 급격하게 떨어졌다. 전엽 후 1주와 4주의 광도에 따른 광합성률은 두 시기 모두 PPFD $600{\mu}mol/m^{-2}/sec^{-1}$까지는 PPFD가 증가할수록 광합성률이 급격히 증가하였으나 이후 PPFD $1,200{\mu}mol/m^{-2}/sec^{-1}$까지는 완만한 증가율을 보이다 그 이상에서는 변화를 보이지 않았다. 전엽 후 1주와 전엽 후 4주간에는 전엽 후 4주가 전엽 후 1주에 비해 PPFD 증가에 따른 광합성률이 높은 경향을 보였다. $CO_2$ 농도별 광합성률은 600ppm까지는 농도가 높을수록 광합성성률이 증가하였으나 그 이상의 농도에서는 변화가 없었다. 차광시간별 엽내 sucrose 함량은 1시간 까지는 차광처리구와 무처리구 간 차이를 보이지 않았으나 2시간부터는 차광처리에서 sucrose 함량이 감소하였다.

To investigate factors determining peach fruit quality, chlorophyll content by leaf positions, chlorophyll content of foliated leaf, change of leaf area, and photosynthetic capacity were monitored. Photosynthetic rate in response to radiation intensity and $CO_2$ concentration, and change of sucrose content after shading treatment also were investigated. Chlorophyll content was similar in $5-12^{th}$ leaves after 10 days of foliation, while young $13-16^{th}$ leaves showed lower chlorophyll contents. Chlorophyll content was 2.56 ${\mu}g/cm^2$ on May $28^{th}$, just after foliation, and rapidly increased up to 6.35 ${\mu}g/cm^2$ on June $12^{th}$. After this point, chlorophyll content gradually increased during two months showing the highest value of 9.03 ${\mu}g/cm^2$ on August $14^{th}$. Leaf area was 27.1 $cm^2$ just after foliation and 37.7 $cm^2$ on $10^{th}$ day of foliation increasing 10.6 $cm^2$ during 10 days. Leaf area slowly increased by 3.9 $cm^2$ during next one month. Photosynthetic capacity increased rapidly until the $30^{th}$ day of foliation showing the highest capacity of 13.8 ${\mu}mol/m^{-2}/sec^{-1}$. After this point, photosynthetic capacity decreased sharply. Photosynthetic rate in response to radiation intensity increased rapidly until the PPFD reached to 600 ${\mu}mol/m^{-2}/sec^{-1}$ and increased gradually from 600 ${\mu}mol/m^{-2}/sec^{-1}$ to 1200 ${\mu}mol/m^{-2}/sec^{-1}$ of PPFD and stayed stable beyond this point. Photosynthetic rate in response to $CO_2$ concentration increased until 600 ppm of $CO_2$. At higher $CO_2$ concentration, photosynthetic rate stayed stable or decreased. Sucrose content in leaves was not significantly different between control and shading group until one hour of shading treatment while decreased in shading group after two hours of treatment.

키워드

참고문헌

  1. Dejong, T.M. 1989. Photosynthesis and Respiration-Peaches, Plums and Nectarines. University of California. pp. 38-41.
  2. Jones, J.W., E. Dayan, L.H. Allen, H. Van Kuelen, and H. Challa. 1991. A dynamic tomato growth and yield model. Amer. Soc. Agricultral Biol. Eng. 34:663-672. https://doi.org/10.13031/2013.31715
  3. Kamaura, J., H. Yamaya, M. Seito, and S. Ichiki. 1990. Influences of some external treatments and some cultural practices on the occurrence of June drop in apple, with special referrence to photosynthates and and its translocation. Bull. Aomori Apple Exp. Stn. 26:109-133.
  4. Kang, S.B., H.I. Jang, I.B. Lee, J.M. Park, and D.K. Moon. 2008. Effect of waterlogging condition on the photosynthesis of "Campbell Early" grapevine. Kor. J. Hort. Sci. Technol. 26(4):372-379.
  5. Kim, K.Y. and F. Kamota. 1985. The effect of solar radiation on photosynthesis, dark respiration and leaf characteristics in japanese pear and peach canopy. J. Kor. Soc. Hort. Sci. Abst. pp. 56-57.
  6. Kim, S.E., M.Y. Lee, and Y.S. Kim. 2013. Characterization of photosynthetic rates by tomato leaf position. Kor. J. Hort. Sci. Technol. 31(2):46-152.
  7. Kim, S.J., D.J. Yu, J.H. Kim, T.C. Kim, B.Y. Lee, and H.J. Lee. 2004. Comparative photosynthetic charateristics of well-watered and water-stressed 'Rancocas' highbush blueberry leaves. J. Kor. Soc. Hort. Sci. 45(3):143-148.
  8. Kim, S.J., R.N. Bae, D.J. Yu, and H.J. Lee. 2005. Photosynthetic response and growth characteristics in shaded blueberry. Kor. J. Hort. Technol. 23(SUPPL. II) October p. 25.
  9. K.M.A. 2009. Weather information. Korea Meteological Administration.
  10. Lee, C.H., S.B. Kim, B.J. Park, J.H. Koh, and S.J. Kang. 1996. The fruit growth and changes in soluble sugar contents of two peach fruit cultivars after stone hardening stage. J. Kor. Soc. Hort. Sci. Abst. pp.328-329.
  11. Lee, S.G., J.H. Moon, Y.A. Jang, S.Y. Kim, and K.D. Ko. 2009. Change of photosynthesis and cellular tissue under high CO2 concentration and high temperature in radish. Kor. J. Hort. Sci. Technol. 27(2):194-198.
  12. Oh, S.D., D.G. Choi, and C.H. Cho. 1997. Effect of different light condition within canopy on growth and photosynthesis in apple tree. J. Kor. Soc. Hort. Sci. 38(4):391-395.
  13. Ro, H.M., P.K. Kim, I.B. Lee, and J.M. Park. 2001. Photosynthetic and Morphometic response of apple trees after three years of exposure to elevated carbon dioxide and temperature. Kor. J. Hort. Technol. 23(SUPPL. I) p. 40.
  14. Roh, H.M., S.K. Yun, and H.J. Lee. 2011. Photosynthetic efficiencies in the leaves of peach (Prunus percica) trees exposed to increased ambient $CO_2$ concentration. Kor. J. Hort. Technol. 29(SUPPL. I) p. 127.
  15. Yoon, I.K., J.K. Kim, and H.C. Lee. 2002. Study on fruit qualities of peach fruits. Ann. Rep. Nat. Re. Ins. pp. 163-172.