References
- A. F. Goetz, "Three decades of hyperspectral remote sensing of the Earth: A personal view," Remote Sensing of Environment, vol. 113, pp. 5-16, 2009. https://doi.org/10.1016/j.rse.2007.12.014
- M. A. Karaska, R. L. Huguenin, J. L. Beacham, M. H. Wang, J. R. Jensen, and R. S. Kaufmann, "AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the neuse river, north carolina," Photogrammetric Engineering and Remote Sensing, vol. 70, no. 1, pp. 125-134, 2004. https://doi.org/10.14358/PERS.70.1.125
- J. Solomon and B. Rock, "Imaging spectrometry for earth remote sensing," Science, vol. 228, pp. 1147-1153, 1985. https://doi.org/10.1126/science.228.4704.1147
- S M. Schweizer and J. M. Moura, "Efficient detection in hyperspectral imagery," IEEE Transactions on Image Processing, vol. 10, no. 4, pp. 584-597, 2001. https://doi.org/10.1109/83.913593
- F. V. D. Meer and S. M. D. Jong, Imaging Spectrometry: Basic Principles and Prospective Applications, Springer, vol. 4, 2001.
- C. Bassani, R. M. Cavalli, F. Cavalcante, V. Cuomo, A. Palombo, S. Pascucci, and S. Pignatti, "Deterioration status of asbestoscement roofing sheets assessed by analyzing hyperspectral data," Remote Sensing of Environment, vol. 109, no. 3, pp. 361-378, 2007. https://doi.org/10.1016/j.rse.2007.01.014
- B. Park, S. C. Yoon, W. R. Windham, K. C. Lawrence, M. S. Kim, and K. Chao, "Line-scan hyperspectral imaging for realtime in-line poultry fecal detection," Sensing and Instrumentation for Food Quality and Safety, vol. 5, no. 1, pp. 25-32, 2011. https://doi.org/10.1007/s11694-011-9107-7
- T. Vo-Dinh, "A hyperspectral imaging system for in vivo optical diagnostics," IEEE Engineering in Medicine and Biology Magazine: the Quarterly Magazine of the Engineering in Medicine & Biology Society, vol. 23, no. 5, pp. 40-49, 2003.
- M. S. Alam, M. N. Islam, A. Bal, and M. A. Karim, "Hyperspectral target detection using Gaussian filter and postprocessing," Optics and Lasers in Engineering, vol. 46, no. 11, pp. 817-822, 2008. https://doi.org/10.1016/j.optlaseng.2008.05.019
- C. I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Springer, 2003.
- J. R. Jensen, Introductory Digital Image Processing: a Remote Sensing Perspective, Prentice-Hall Inc., no. Ed. 2, 1996.
- S. Kawaguchi and R. Nishii, "Hyperspectral image classification by bootstrap AdaBoost with random decision stumps," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3845-3851, 2007. https://doi.org/10.1109/TGRS.2007.903708
- Y. L. Chang, "A simulated annealing feature extraction approach for hyperspectral images," Future Generation Computer Systems, vol. 27, no. 4, pp. 419-426, 2011. https://doi.org/10.1016/j.future.2010.08.008
- A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 65-74, 1988. https://doi.org/10.1109/36.3001
- Z. Fu, T. Caelli, N. Liu, and A. Robles-Kelly, "Boosted band ratio feature selection for hyperspectral image classification," ICPR 2006. 18th International Conference on IEEE., vol. 1, pp. 1059-1062, 2006.
- S. Nakariyakul and D. Casasent, "Hyperspectral ratio feature selection: agricultural product inspection example," Proc. of SPIE, vol. 5587, pp. 133-143, 2004.
- S. Maji, A. C. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1-8, 2008.
- Y. B. Joo and K. M. Huh, "Robust defect size measuring method for an automated vision inspection system," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 19, no. 11, pp. 974-978, 2013. https://doi.org/10.5302/J.ICROS.2013.13.9031
- S. J. Lee and S. W. Kim, "Classifying scratch defects on billets using image processing and SVM," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 19, no. 3, pp. 256-261, 2013. https://doi.org/10.5302/J.ICROS.2013.12.1849