DOI QR코드

DOI QR Code

The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films

  • Kim, Han-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 투고 : 2012.10.22
  • 심사 : 2012.11.15
  • 발행 : 2013.02.25

초록

In this study, we carried out an investigation of the etching characteristics (etch rate, and selectivity to $SiO_2$) of $ZrO_2$ thin films in a $CF_4$/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 60.8 nm/min for $ZrO_2$ thin films was obtained at a 20 % $CF_4/(CF_4+Ar)$ gas mixing ratio. At the same time, the etch rate was measured as a function of the etching parameter, namely ICP chamber pressure. X-ray photoelectron spectroscopy (XPS) analysis showed efficient destruction of the oxide bonds by the ion bombardment, as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch characteristics for the $CF_4$-containing plasmas.

키워드

참고문헌

  1. K. Takahashi, K. Ono, J. Vac. Sci. Technol. A 24, 437 (2006) [DOI: http://dx.doi.org/10.1116/1.2187997].
  2. C. F. Yen, M. K. Lee, J. Electrochem. Soc. 158(2), G43 (2011) [DOI: http://dx.doi.org/10.1149/1.3512989].
  3. G. D. Wilk, R. M. Wallance, J. M. Anthony, J. Appl Phys. 89, 5243 (2001) [DOI: http://dx.doi.org/10.1063/1.1361065].
  4. U. Ehrke, A. Sears, L. Alff, and D. Reisinger, Applied Surface Science 231, 598 (2004) [DOI: http://dx.doi.org/10.1016/ j.apsusc.2004.03.120].
  5. M. Lebedev, J. Akedo, and T. Ito, J. Cryst. Growth. 275, e1301 (2005) [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2004.11.109].
  6. R. J. Gaboriaud, F. Paumier, F. Pailloux, and P. Guerin, Materials Science and Engineering B 109, 34 (2004) [DOI: http://dx.doi. org/10.1016/j.mseb.2003.10.023].
  7. S. Baba and J. Akedo, Appl. Surf. Sci. 255, 9791 (2009) [DOI: http://dx.doi.org/10.1016/j.apsusc.2009.04.071].
  8. T. Ngai, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, Appl. Phys. Lett. 76, 502 (2000) [DOI: http://dx.doi. org/10.1063/1.125801].
  9. K. T. Kim and C. I. Kim, Thin Solid Films 472, 26 (2005) [DOI: http://dx.doi.org/10.1016/j.tsf.2004.05.128].
  10. Y. H. Joo, J. C. Woo, C. I. Kim, J. Electrochem. Soc. 159(4), D190 (2012) [DOI: http://dx.doi.org/10.1149/2.034204jes].
  11. J. C. Woo, G. H. Kim, D. P. Kim, D. S. Um, C. I. Kim, Ferroelectrics 384, 47 (2009) [DOI: http://dx.doi. org/10.1080/00150190902892766].
  12. A. M. Efremov, S. M. Koo, D. P. Kim, K. T. Kim, C. I. Kim, J. Vac. Sci. Technol. A 22, 2101 (2004) [DOI: http://dx.doi. org/10.1116/1.1772370].
  13. G. H. Kim, C. I. Kim, A. M. Efremov, J. Vac, Sci. Technol. A 79, 231 (2005) [DOI: http://dx.doi.org/10.1016/j.vacuum.2005.03.012].
  14. J. K. Jung, W. J. Lee, Jpn. J. Appl. Phys. 40, 1408 (2001) [DOI: http://dx.doi.org/10.1143/JJAP.40.1408].
  15. M. H. Shin, S. W. Na, N. E. Lee, T. K. Oh, J. Kim, T. Lee, J. Ahn, Jpn. J. Appl. Phys 44(7B), 5811 (2005) [DOI: http://dx.doi. org/10.1143/JJAP.44.5811].
  16. A. M. Efremov, D. P. Kim, C. I. Kim, J. Vac. Sci. Technol. B 75, 133 (2004) [DOI: http://dx.doi.org/10.1016/j.vacuum.2004.01.077].
  17. C. I. Lee, G. H. Kim, D. P. Kim, J. C. Woo, C. I. Kim, Ferroelectrics 384:1, 32 ( 2009 ) [ DOI : http://dx.doi.org/10.1080/00150190902892725].
  18. T. Andriesse, M. S. P. Zijlstra, E. V. D. Drift, J. Vac. Sci. Technol. B 18, 3462 (2000) [DOI: http://dx.doi.org/10.1116/1.1313577].

피인용 문헌

  1. Chemistry of surface nanostructures in lead precursor-rich PbZr0.52Ti0.48O3 sol–gel films vol.363, 2016, https://doi.org/10.1016/j.apsusc.2015.11.118
  2. Dry etching characteristics of TiO2 thin films using inductively coupled plasma for gas sensing vol.107, 2014, https://doi.org/10.1016/j.vacuum.2014.03.025