DOI QR코드

DOI QR Code

Properties of AZO/Ag/AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate

  • Jung, Yu Sup (Department of Electrical Engineering, Gachon University) ;
  • Park, Yong Seo (Department of Electrical Engineering, Gachon University) ;
  • Kim, Kyung Hwan (Department of Electrical Engineering, Gachon University) ;
  • Lee, Won-Jae (Department of Electronic Engineering, Gachon University)
  • 투고 : 2011.11.07
  • 심사 : 2012.08.27
  • 발행 : 2013.02.25

초록

The AZO/Ag/AZO multilayer films were deposited on polyethersulfone (PES) substrate by using facing target sputtering methods at room temperature. The AZO/Ag/AZO multilayer films with polymer substrate had advantages, such as low sheet resistance, high optical transmittance in visible range and stable mechanical properties. From the results, the AZO/Ag/AZO multilayer films (50/12/50 nm) demonstrated a sheet resistance of 11 ${\Omega}/{\square}$ and average transmittance of 87% in visible range (wavelength of 380-770 nm). Moreover, the multilayer showed stable mechanical properties compared to the single-layered AZO sample during the bending test due to the existence of the ductile Ag metal layer.

키워드

참고문헌

  1. M. A. Martinez, J. Herero and M. T. Gutierez, Sol. Energy Mater. Sol. Cells, 45, 75 (1997) [DOI: http://dx.doi.org/10.1016/S0927- 0248(96)00066-9].
  2. K. T. Ramakrishna Reddy, H. Gopalaswamy, P. J. Reddy and R.W. Miles, J. Crystal Growth, 210, 516 (2000) [DOI:10.1016/S0022- 0248(99)00868-4]
  3. C. G. Granqvist, Thin Solid Films, 193-194, 730 (1990) [DOI: http:// dx.doi.org/10.1016/0040-6090(90)90225-3]
  4. X. Liu, X.Cai, J. Mao, and C. Jin, Appl. Surf. Sci. 183, 103 (2001) [DOI: http://dx.doi.org/10.1016/S0169-4332(01)00570-0?]
  5. K. H. Choi, J. Y. Kim, Y. S. Lee and H. J. Kim, Thin Solid Films, 341. 152 (1999) [DOI: http://dx.doi.org/10.1016/S0040-6090(98)01556- 9]
  6. D.R.Sahu, and J. Huang, Thin Solid Films, 515, 876, (2006) [DOI: http://dx.doi.org/10.1016/j.tsf.2006.07.049]
  7. J. S. Hong, and K. H. Kim, Trans. Electr. Electron. Mater. 12, 76 (2011) [DOI: http://dx.doi.org/10.4313/TEEM. 2011.12.2.76]
  8. Y. S. Jung, W. J. Kim, H.W. Choi, Y. S. Park, and K. H. Kim, Thin solid films 519, 6844 (2011) [DOI: http://dx.doi.org/10.1016/ j.tsf.2011.01.407]
  9. Y. S. Jung, W. J. Kim, H. W. Choi, and K. H. Kim, Microelectron. Eng., 89, 124 (2012)[DOI: http://dx.doi.org/10.1016/j.mee.2011.02.071]
  10. Y. S. Jung, and K. H. Kim, Mater. Res. Bull. 47, 2895 (2012) [DOI: http://dx.doi.org/10.1016/j.materresbull.2012.04.104]
  11. G. Leftheriotis, P. Yianoulis, and D. Patrikios. Thin Solid Films, 306, 92 (1997) [DOI: http://dx.doi.org/10.1016/S0040-6090(97)00250-2]
  12. G. Haacke, J. Appl. Phys., 47, 4086 (1976) [DOI: http://dx.doi. org/10.1063/1.323240]

피인용 문헌

  1. Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays vol.17, pp.1, 2016, https://doi.org/10.4313/TEEM.2016.17.1.33
  2. Effects of sputtering power Schottky metal layers on rectifying performance of Mo–SiC Schottky contacts vol.55, pp.1S, 2016, https://doi.org/10.7567/JJAP.55.01AC05
  3. AZO/Ag/AZO transparent conductive films: correlation between the structural, electrical, and optical properties and development of an optical model vol.6, pp.10, 2016, https://doi.org/10.1364/OME.6.003217
  4. Fabrication of ZnO/Ag Nanowire/ZnO Thin Films for Optoelectronic Applications vol.622, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1105055
  5. Effects of post-annealing treatment on the properties of reactive sputtered cuprous-oxide thin films vol.67, pp.6, 2015, https://doi.org/10.3938/jkps.67.1013
  6. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes vol.55, pp.1S, 2016, https://doi.org/10.7567/JJAP.55.01AE14
  7. Development of a highly transparent, low-resistance lithium-doped nickel oxide triple-layer film deposited by magnetron sputtering vol.53, pp.10, 2017, https://doi.org/10.1039/C6CC08738H
  8. Enhanced Optical and Electrical Properties of ITO/Ag/AZO Transparent Conductors for Photoelectric Applications vol.2017, 2017, https://doi.org/10.1155/2017/8315802
  9. The influence of Ni layer and thickness of AZO layers on the optoelectronic properties of AZO/Ni/AZO tri-layer deposited at room temperature vol.137, 2014, https://doi.org/10.1016/j.matlet.2014.09.001
  10. Characterizing the electrical and optical properties of AZO/AgPd/AZO multilayer film using RF magnetron sputtering vol.54, pp.4, 2016, https://doi.org/10.1016/j.cjph.2016.06.007
  11. Properties of p-type N-doped Cu2O thin films prepared by reactive sputtering vol.53, pp.11S, 2014, https://doi.org/10.7567/JJAP.53.11RA10
  12. Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers vol.82, 2015, https://doi.org/10.1016/j.spmi.2015.03.005
  13. Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering vol.41, pp.1, 2015, https://doi.org/10.1016/j.ceramint.2014.09.096
  14. Al doped ZnO based MISIM ultraviolet photodetectors vol.23, pp.4, 2017, https://doi.org/10.1007/s00542-016-2894-3
  15. Influence of the ZnO:Al dispersion on the performance of ZnO:Al/Ag/ZnO:Al transparent electrodes vol.616, 2016, https://doi.org/10.1016/j.tsf.2016.09.032
  16. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications vol.195, 2015, https://doi.org/10.1016/j.mseb.2015.02.006
  17. Optical and electrical properties of AZO/Ni/ITO transparent conductor vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.043
  18. Effect of IZO passivation layer on AgNWs flexible transparent electrode vol.645, pp.1, 2017, https://doi.org/10.1080/15421406.2016.1277662
  19. The Ag layer thickness effect on the figure of merit of the AZO/Ag bilayer prepared by DC sputtering of AZO and thermal evaporation method of Ag vol.6, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaecd9
  20. Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures vol.8, pp.22, 2018, https://doi.org/10.1039/C7RA13550E