DOI QR코드

DOI QR Code

Evaluation of Anastomotic Strength and in-vitro Degradability with Microvascular Anastomosis Coupler Based on Injection Molding Condition made by Biodegradable Polycaprolactone(PCL)

생체분해성 폴리카프로락톤(PCL) 미세혈관 문합커플러의 사출성형조건에 따른 문합강도 및 in-vitro 분해능 평가

  • 안근선 ((주)트리플씨메디칼 R&D센터) ;
  • 한기봉 ((주)트리플씨메디칼 R&D센터) ;
  • 오승현 ((주)트리플씨메디칼 R&D센터) ;
  • 박종웅 (고려대학교 의과대학 안산병원 정형외과) ;
  • 김철웅 ((주)트리플씨메디칼 R&D센터)
  • Received : 2013.11.13
  • Accepted : 2013.12.22
  • Published : 2013.12.31

Abstract

The use of mechanical anastomosis coupler instead of sutures has been increasing in microvascular anastomosis surgery. However, non-biodegradable anastomosis coupler has problems such as not only inflammatory reaction but also remaining permanently in operation wound. Therefore, we fabricated biodegradable anastomosis coupler using injection molding process to overcome the limitation of non-biodegradable anastomosis coupler. In various injection molding process conditions, the shrinkage was calculated with different cylinder temperatures and injection molding pressures and anastomotic strength was measured. As a result, changes in shrinkage hole part larger than the pin part. In addition, the shrinkage in the cylinder at higher temperatures increase. However, the higher the injection pressure, shrinkage tends to decrease, respectively. In-vitro degradation behavior of PCL anastomotic coupler evaluated for 12 weeks, water uptake was increased and molecular weight was accompanied by a reduction in mass of the biological degradation and reduction of anastomotic strength was confirmed. However, decreased levels of anastomotic strength enough to exceed the requirements of preclinical surgery, PCL microvascular anastomosis coupler suitable candidate materials that could identify.

최근 미세혈관 문합수술 시 봉합사 대신 기계식 문합커플러를 사용하는 수술례가 증가하고 있다. 그러나 기존의 비분해성 문합커플러는 염증반응 뿐만 아니라 수술 후 영구적으로 인체 내에 잔존한다는 한계성이 있다. 따라서 본 연구에서는 기존 비분해성 문합커플러의 한계성을 극복하기 위해 사출성형공정을 이용한 생분해성 PCL 문합커플러 제작을 채택하였다. 사출성형 공정조건 중 실린더온도와 사출압력에 따른 수축률을 계산하고 이에 따른 문합강도를 측정하였다. 그 결과 핀보다는 홀 파트의 수축률 변화가 크게 나타났다. 또한 수축률은 실린더온도가 상승할수록 증가하였으나 반대로 사출압력이 높아질수록 감소하는 경향이 나타났다. PCL 문합 커플러의 in-vitro 분해거동을 12주간 평가한 결과, 수분흡수는 증가하고 분자량은 감소하여 생체분해를 동반한 질량 및 문합강도의 감소를 확인할 수 있었다. 그러나 문합강도의 저하 수준이 전임상 요구조건을 충분히 상회하기에 PCL 문합커플러는 미세혈관수술에 적합한 후보재료임을 파악할 수 있었다.

Keywords

References

  1. Jung, Y. J., Son, D. G. and Kim, H. J., 2006, "MAC System for Microanastomosis of Free Flap," The Korean Society of Microsurgery, Vol.15, No.2, pp.51-57.
  2. Chung, N. Y, Lim H. C., Lee, S. H., Park, J. H. and Park, J. W., 2008, "Easy and Fast Anastomosis using Microvascular Anastomotic Coupler System," Journal of Korean Orthopeadic Association, Vol.43, No.1, pp.36-42. https://doi.org/10.4055/jkoa.2008.43.1.36
  3. Nakayama, K., Yamamoto, K., Tamiya, T., 1962, "A New Simple Apparatus for Anastomosis of Small Vessels. Preliminary Report," The International College of Surgeons, Vol.38, pp.12-26.
  4. Middleton, J. C. and Tipton, A. J., 2000, "Synthetic Biodegradable Polymers as Orthopedic Devices," Biomaterials, Vol.21, pp.2335-2346. https://doi.org/10.1016/S0142-9612(00)00101-0
  5. Barrows, T. H., 1986, "Degradable Implant Materials: A Review of Synthetic Absorbable Polymers and Their Applications," Clinical Materials, Vol.1, pp.233-257. https://doi.org/10.1016/S0267-6605(86)80015-4
  6. Kim, C. W., Ahn, G. S., Han, G. B., Park, J. K. and Hwang, J. H., 2013, "Method for Manufacturing Anastomosis Coupler Using Bio-degradable Polycaprolactone," The Korean Intellectual Property Office, Patent No.10-1308133, Korea.
  7. Kim, S. H. and Kim, S. H., 2007, "Biofunctional Biodegradable Polymer," Polymer Science and Technology, Vol.18, pp.450-457.
  8. Joji, S., Muneshige, H. and Ikuta, Y., 1999, "Experimental Study of Mechanical Microvascular Anastomosis with New Biodegradable Ring Device," British Journal of Plastic Surgery, Vol.52, No.7, pp.559-564. https://doi.org/10.1054/bjps.1999.3131
  9. Qu, W., Muneshige, H. and Ikuta, Y., 1999, "An Absorbable Pinned-ring Device for Microvascular Anastomosis of Vein Grafts: Experimental studies," Microsurgery, Vol.19, No.3, pp.128-134. https://doi.org/10.1002/(SICI)1098-2752(1999)19:3<128::AID-MICR2>3.0.CO;2-0
  10. Kim, C. W., Yang, Y. K., 2012, "Isomorphic Anastomosis Ring," The Korean Intellectual Property Office, Patent No.10-1126220, Korea.
  11. Jung, Y. D., Kim, Y. S., Kim, I. K. and Jung, H. C., 1997, "Research of Shrinkage Phenomenon on Metal Insert Injection Molded Parted," The Korean Society for Power System Engineering, Vol.12, pp.127-131.
  12. Ueda, K., Mukai, T., Ichinose, S., Koyama, Y. and Takakuda, K., 2010, "Bioabsorbable Device for Small-caliber Vessel Anastomosis," Microsurgery, Vol.30, No.6, pp.494-501. https://doi.org/10.1002/micr.20764
  13. Shim, J. H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J. W., Kang, S. W., Lee, S. H. and Cho, D. W., 2010, "Effect of Thermal Degradation of SFF-Based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," Journal of Biomaterials Science, Vol.21, pp.1069-1080. https://doi.org/10.1163/092050609X12457428919034
  14. Ueda, K., Mukai, T., Ichinose, S., Koyama, Y. and Takakuda, K., 2010, "Bioabsorbable Device for Small-caliber Vessel Anastomosis," Microsurgery, Vol.30, No.6, pp.494-501. https://doi.org/10.1002/micr.20764