DOI QR코드

DOI QR Code

Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Solid Oxide Fuel Cell Anode Fabricated by Spark Plasma Sintering

플라즈마 소결법을 이용한 고체산화물 연료전지 음극 제조 시 소결온도에 따른 미세구조 및 물성평가

  • Song, Byung Ju (Department of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University) ;
  • Kim, Ka Ram (Department of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University) ;
  • Kim, Hye Sung (Department of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University)
  • 송병주 (부산대학교 나노융합기술학과) ;
  • 김가람 (부산대학교 나노융합기술학과) ;
  • 김혜성 (부산대학교 나노융합기술학과)
  • Received : 2013.10.28
  • Accepted : 2013.12.17
  • Published : 2013.12.28

Abstract

Microstructural and mechanical properties of Ni-YSZ fabricated using SPS processing have been investigated at various sintering temperatures. Our study shows samples to be applied as a SOFC anode have the proper porosity of 40% and high hardness when processed at $1100^{\circ}C$. These results are comparable to the values obtained at $100-200^{\circ}C$ higher sintering temperature reported by others. This result is important because when the fabrication processes are performed above $1100^{\circ}C$, the mechanical property starts to decrease drastically. This is caused by the fast grain coarsening at the higher temperature, which initiates a mismatch between thermal expansion coefficients of Ni and YSZ and induces cracks as well.

Keywords

References

  1. H. J. Cho and G. M. Choi: J. Power Sources., 176 (2008) 96. https://doi.org/10.1016/j.jpowsour.2007.09.118
  2. H. C. Shin, W. S. Cho, S. Y. Shin and J. G. Kim: J. Kor. Ceram. Soc., 39(12) (2002) 1183. https://doi.org/10.4191/KCERS.2002.39.12.1183
  3. Y. M. Park and G. M. Choi: Solid State Ionics., 120 (1999) 265. https://doi.org/10.1016/S0167-2738(99)00010-7
  4. D. Salamon, K. Maca and Z. Shen: Scripta Mater., 66 (2012) 899. https://doi.org/10.1016/j.scriptamat.2012.02.013
  5. X. J. Chen and K. A. Khor: Mater. Sci. Eng. A., 341 (2003) 43. https://doi.org/10.1016/S0921-5093(02)00079-5
  6. B. A. Horri, C. Selomulya and H. Wang: Mater. Res. Bull., 40 (2005) 1936. https://doi.org/10.1016/j.materresbull.2005.06.002
  7. N. H. Kwon and G. H. Kim: Mater. Sci. Eng. A., 299 (2001) 185. https://doi.org/10.1016/S0921-5093(00)01376-9
  8. R. F. Martins, M. C. Brant and R. Z. Domingues: Mater. Res. Bull., 44 (2009) 451. https://doi.org/10.1016/j.materresbull.2008.04.017
  9. T. Fukui, S. Ohara and M. Naito: J. Power Sources., 110 (2002) 91. https://doi.org/10.1016/S0378-7753(02)00218-5
  10. J. K. Park, S. Y. Yang, T. H. Lee, Y. S. Yoo and J. W. Park:,J. Kor. Powd. Met. Inst., 43(12) (2006) 823.
  11. Y. Li, Y. Xie and J. Gong: Mat. Sci. Eng. B., 86 (2001) 119 https://doi.org/10.1016/S0921-5107(01)00683-3
  12. U. Anselmi-Tamburini: J. Mater. Res., 19 (11) (2004).
  13. T. Takeuchi and I. Kondou: J. Electrochem. Soc., 149 (2002) A455 https://doi.org/10.1149/1.1456915
  14. J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim and K. H. Yoon: Solid State Ionics., 148 (2002) 15 https://doi.org/10.1016/S0167-2738(02)00050-4
  15. D. Simwonis, F. Tietz and D. Stover: Solid State Ionics., 132 (2000) 241 https://doi.org/10.1016/S0167-2738(00)00650-0
  16. B. A. Horri, C. Selomulya and H. Wang: Int. J. Hydrogen Energy., 37 (2012) 15311. https://doi.org/10.1016/j.ijhydene.2012.07.108
  17. W. Li, K. Hasinska, M. Seabaugh, S. Swartz and J. Lannutti: J. Power Sources., 138 (2004) 145. https://doi.org/10.1016/j.jpowsour.2004.06.034
  18. L. F. Hu and C. A. Wang: Ceram. Int., 36 (2010) 1697. https://doi.org/10.1016/j.ceramint.2010.03.009
  19. R. M. C. Clemmer and S. F. Corbin: Solid State Ionics., 166 (2004) 251. https://doi.org/10.1016/j.ssi.2003.12.009
  20. M. C. Kim, J. H. Lee and J. H. Han: J. Power Sources., 196 (2011) 2475. https://doi.org/10.1016/j.jpowsour.2010.10.109
  21. S. K. Pratihar, A. D. Sharma and H. S. Maiti: Mater. Chem. Phys., 96 (2006) 388. https://doi.org/10.1016/j.matchemphys.2005.07.025
  22. L. Mingyi, Y. Bo, X. Jingming and C. Jing: Int. J. Hydrogen Energy., 35 (2010) 2670. https://doi.org/10.1016/j.ijhydene.2009.04.027
  23. Y. C. Yang, T. H. Chang, Y. C. Wu and S. F. Wang: Int. J. Hydrogen Energy., 37 (2012) 13746. https://doi.org/10.1016/j.ijhydene.2012.03.080
  24. W. P. Pan, Z. Lu, K. F. Chen, X. B. Zhu, X. Q. Huang, Y. H. Zhang, B. Wei and W. H. Su: Fuel Cell., 11(2) (2011) 172. https://doi.org/10.1002/fuce.201000135
  25. J. Hu, Z. Lu, K. Chen, X. Huang, N. Ai, X. Du, C. Fu, J. Wang and W. Su: J. Membr. Sci., 318 (2008) 445. https://doi.org/10.1016/j.memsci.2008.03.008
  26. J. W. Heo, D. S. Lee, J. H. Lee, J. D. Kim, J. S. Kim, H. W. Lee and J. H. Moon: J. Kor. Ceram. Soc., 39(1) (2002) 86. https://doi.org/10.4191/KCERS.2002.39.1.086