DOI QR코드

DOI QR Code

Mobility Prediction Based Autonomous Data Link Connectivity Maintenance Using Unmanned Vehicles in a Tactical Mobile Ad-Hoc Network

전술 모바일 애드혹 네트워크에서 무인기를 이용하는 이동 예측 기반의 데이터 링크 연결 유지 알고리즘

  • 르반둑 (울산대학교 전기컴퓨터공학과) ;
  • 윤석훈 (울산대학교 전기공학부 컴퓨터정보통신전공)
  • Received : 2012.09.17
  • Accepted : 2012.12.12
  • Published : 2013.01.31

Abstract

Due to its self-configuring nature, the tactical mobile ad hoc network is used for communications between tactical units and the command and control center (CCC) in battlefields, where communication infrastructure is not available. However, when a tactical unit moves far away from the CCC or there are geographical constraints, the data link between two communicating nodes can be broken, which results in an invalid data route from the tactical units to CCC. In order to address this problem, in this paper we propose a hierarchical connectivity maintenance scheme, namely ADLCoM (Autonomous Data Link Connectivity Maintenance). In ADLCoM, each tactical unit has one or more GW (gateway), which checks the status of data links between tactical units. If there is a possibility of link breakage, GWs request ground or aerial unmanned vehicles to become a relay for the data link. The simulation results, based on tactical scenarios, show that the proposed scheme can significantly improve the network performance with respect to data delivery ratio.

자가구성 능력을 가진 전술모바일애드혹 네트워크는 기간망을 사용할 수 없는 전술환경에서 단위전술부대와 중앙지휘소와의 통신연결을 제공하기 위해 사용된다. 하지만, 작전 전술부대가 임무수행을 위해 중앙지휘소로부터 장거리 위치로 이동하거나 지형적 장애물이 있는 경우에는 통신단말간 데이터링크가 단절되어 전술부대로부터 지휘소까지의 데이터 경로가 유효하지 않을 수 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 ADLCoM(Autonomous Data Link Connectivity Maintenance) 구조를 제안한다. ALDCoM하에서 각 전술그룹단위는 하나이상의 GW 노드 (게이트웨이)를 갖으며 GW 노드들은 전술부대 및 지휘소 간의 데이터 링크상태를 지속적으로 확인한다. 만약 데이터링크가 단절될 가능성이 높다면 하나이상의 육상 또는 공중 무인기를 데이터링크를 위한 릴레이로서 동작하도록 요청하여 전술 부대 및 지휘소간, 또는 전술 부대간의 데이터링크의 연결을 지속적으로 유효하게 유지 시킨다. 전술환경을 모의한 시뮬레이션을 통하여 ADLCoM구조가 전술모바일애드혹망의 성능을 현저히 높일 수 있음을 보인다.

Keywords

References

  1. M. A. Brose and M. Hauge, "Group communication in mobile military networks," Norwegian Defence Research Establishment, Feb. 2012.
  2. M. Salmanian, "Military wireless network information operation scenarios," Technical Memorandum, Defence Research and Development Canada, Dec. 2003.
  3. S. Munk, "Situational awareness (data) bases in military command and control," Inform. Technol., vol. 3, no. 3, pp. 373-385, Apr. 2004.
  4. C. E. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector routing," in Proc. IEEE Workshop on Mobile Comput. Syst. and App., pp. 90-100, Feb. 1999.
  5. D. Johnson, Y. Hu, and D. A. Maltz, "The dynamic source routing protocol (DSR) for Mobile ad hoc wireless networks for IPv4," RFC 4728, Feb. 2007.
  6. C. Perkins and I. Chakeres, "Dynamic MANET on-demand (AODVv2) routing," Mobile Ad-hoc Networks Working Group Internet Draft, Mar. 2012.
  7. T. Clausen and P. Jacquet, "Optimized link state routing protocol (OLSR)," RFC 3626, Oct. 2003.
  8. H. Liu, A. Nayak, and I. Stojmenovi, "Localized mobility control routing in robotic sensor wireless networks," in Proc. Int. Conf. Mobile Ad-hoc and Sensor Netw., pp. 19-31, China, Dec. 2007.
  9. V. Loscr, E. Natalizio, and C. Costanzo, "Simulations of the impact of controlled mobility for routing protocols," EURASIP J. Wirel. Commun. Netw., vol. 2010, no. 7, pp. 1-12, Apr. 2010.
  10. E. Hamouda, N. Mitton, and D. Simplot-Ryl, "Energy efficient mobile routing in actuator and sensor networks with connectivity preservation," in Proc. Int. Conf. Ad Hoc Netw. and Wirel., pp. 15-28, Jul. 2011.
  11. K. Ko, K. Kang, and Y. Cho, "A scalable content-based routing scheme considering group Mobility in tactical mobile ad-hoc networks," J. KICS, vol. 35, no. 5, pp. 721-733, May. 2010.
  12. P. Holliday, "SWARMM - a mobility modelling tool for tactical military networks," in Proc. Military Commun. Conf. (MILCOM), pp. 689-875, Nov. 2008.
  13. D. K. Goldenberg, J. Lin, A. S. Morse, B. E. Rosen, and Y. R. Yang, "Towards mobility as a network control primitive," in Proc. the 5th ACM Int. Symp. on Mobile Ad Hoc Netw. and Comp., pp. 163-174, Japan, May. 2004.
  14. D. V. Le, H. Oh, and S. Yoon, "Reinforcing wireless links using controllable mobility of robotic relays," in Proc. IEEE Asia-Pacific Conference Communications (APCC 2012), pp. 23-28, Korea, Oct. 2012.
  15. L. Zhang, L. Liu, C. Gotsman, and S. J. Gortler, "An as-rigid-as-possible approach to sensor network localization," ACM Trans. Sensor Netw., vol. 6, no. 35, pp. 35:1-35:21, Jul. 2010.
  16. W. Li, J. Bao and, W. Shen, "Collaborative wireless sensor network: a survey," in Proc. 2011 IEEE Int. Conf., pp. 2614-2619, Oct. 2011.
  17. W. Su, S.-J. Lee, and M. Gerla, "Mobility prediction and routing in ad hoc wireless networks," Int. J. Netw. Manag., vol. 11, no. 1, pp. 3-30, Feb. 2001. https://doi.org/10.1002/nem.386
  18. G. Cheng, Z. Jinglong, P. Pawelczak, and R. Hekmat, "Improving packet delivery ratio estimation for indoor ad hoc and wireless sensor networks," in Proc. Consumer Commu. and Netw. Conf., pp. 1-5, Jan. 2009.
  19. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, "A group mobility model for ad hoc wireless networks," in Proc. ACM Int. Workshop on Modeling, Analysis and Simul. of Wirel. and Mobile Syst., pp. 53-60, United States, Aug. 1999.
  20. Sep., 14, 2012, from http://www.globalsecurity.org/military/systems/ ground/jtrs_cluster1.htm