DOI QR코드

DOI QR Code

경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구

Development of Large Propulsion Motor Bearings Considering Slope Conditions

  • Oh, Seung Tae (Power & Industrial System R&D Center, Hyosung Corporation) ;
  • Choi, Jin Woo (Power & Industrial System R&D Center, Hyosung Corporation) ;
  • Kang, Byeng Hi (Power & Industrial System R&D Center, Hyosung Corporation) ;
  • Kim, Jin (Power & Industrial System R&D Center, Hyosung Corporation) ;
  • Choi, Seong Pil (Dept. of R&D Center, Turbolink Co., Ltd.) ;
  • Bin, Jae Goo (Dept. of the 6th R&D Institute-3 Agency for Defense Development (ADD))
  • 투고 : 2011.12.22
  • 심사 : 2012.10.18
  • 발행 : 2013.02.04

초록

본 논문에서는 상용 회전체 동역학 해석 툴을 이용하여 경사 운전조건을 고려한 대용량 추진 전동기용 베어링 개발에 상사적 설계 방법과 실험적 방법을 적용하였다. 개발된 베어링은 전기적으로 절연이 되어있으며 각 연결부는 2~4mm 의 에폭시 절연판을 연결하여 낮은 열전도 특성을 가지도록 하였다. 본 연구에서는 기존의 저속운전에서 야기되는 베어링 손상 문제를 해결하기 위해 원활한 유막이 생성될 수 있도록 고안한 정압 윤활장치를 적용하여 우수한 윤활특성을 확보하였다. 또한 대형 중량물에 대한 유지보수를 고려하여 반분할 방식의 조립구조를 적용하였다. 본 논문은 고부하, 저속 운전의 추진 전동기 분야에 사용되는 미끄럼 베어링의 주요 핵심설계요소를 언급하였다. 게다가, 시험벤치상에서 다양한 경사조건을 통해 실링부의 오일누유 현상을 확인하였다.

In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

키워드

참고문헌

  1. Szeri, A. Z., 1980, Tribology : Friction, Lubrication and Wear, Hemisphere Pub. Co., New York.
  2. Pinkus, O., Stemlicht, S. A., 1961, Theory of Hydro Dynamic Lubrication, McGraw-Hill, New York.
  3. Michael M, Khonsari. and Richard Booser. E., 2001,Applied Tribology, Bearing Design and Lubrication, JOHN WILEY & SONS, A Wiley- Interscience Pub-lication, pp. 223-233.
  4. Yang, S. H., Park, C. H., Kim, C. S. and Ha, H. C., 2004, " Study on the prevention of pad fluttering with the variation of preload in a tilting pad journal bearing, " KSNVE, V14.No.4, pp.344-351. https://doi.org/10.5050/KSNVN.2004.14.4.344
  5. Nelson, H. D., 1976, "The Dynamics of Rotor Bearing System Using Finite Element," Journal of Engineering Industry, pp. 593-600.
  6. Childs, D.W. and Graviss, K., 1982, "A Note on Critical -Speed Solution for Finite-Element-Based Rotor Models,"Transaction of ASME, Vol.104, pp. 412-416. https://doi.org/10.1115/1.3256359
  7. Castelli, V. and Shapiro, W., 1967, "Improved Method of Numerical Solution of the General Incompressible Fluid-Film Lubrication Problem," Transactions ASME, Journal of Lubrication Technology, pp. 211-218.
  8. Park, C. J., Lee, S. W. and Kweon, K. Y., 2010, "Dynamics Analysis of the Rotor System with Consideration of Variable Speed," KSNVE.SPRING, pp. 439-440.
  9. Tsuneo, S., 1988, Journal-Bearing Databook, Spring- Verlag Berlin Heidelberg New York, pp.9-13.
  10. Hamrock, B. J., 1994, Fundamentals of Fluid Film Lubrication, 2ND Edition, McGraw-Hill, Inc.
  11. ARMD JURNBR Manual, 2004, Appendix A, pp. 1-6.

피인용 문헌

  1. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.073