DOI QR코드

DOI QR Code

Dual Functional Gd(III)-DOTA Liposomes for Cancer Therapy and Diagnosis as a Theragnostic Carrier

  • Han, Hee Dong (Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology) ;
  • Jung, Suk Hyun (Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology) ;
  • Seong, Hasoo (Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology) ;
  • Cho, Sun Hang (Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology) ;
  • Shin, Byung Cheol (Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology)
  • Received : 2012.09.26
  • Accepted : 2012.10.23
  • Published : 2013.01.20

Abstract

Development of dual functional liposome has been studied for cancer theragnostics. Therefore, we focused on ultrasound-sensitive liposomes with doxorubicin (DOX) and gadolinium (Gd) as a theragnostic carrier having a potential for cancer therapy and diagnosis. In this study, Gd(III)-DOTA-modified sonosensitive liposomes (GL) was developed using chemically synthesized Gd(III)-DOTA-DPPE lipid. Sonosensitivity of GL to 1 MHz ultrasound induced 25% of DOX release. The relaxivities ($r_1$) of GL were $7.33-10.34\;mM^{-1}s^{-1}$, which was higher than that of MR-bester$^{(R)}$. Intracellular delivery of DOX from GL by ultrasound irradiation was evaluated according to ultrasound intensity, resulting in increase of uptake of DOX released from ultrasound-triggered GLs compared to GL3 or Doxil$^{(R)}$ without ultrasound. Taken together, this study shows that the paramagnetic and sonosensitive liposomes, GL, is a novel and highly effective delivery system for drug with the potential for broad applications in human disease.

Keywords

References

  1. Sharma, A.; Sharma, U. S. Int. J. Pharm. 1997, 154, 123. https://doi.org/10.1016/S0378-5173(97)00135-X
  2. Bajoria, R.; Sooranna, S. R. Placenta 1998, 19, 265. https://doi.org/10.1016/S0143-4004(98)80048-9
  3. Han, H. D.; Shin, B. C.; Choi, H. S. Eur. J. Pharm. Biopharm. 2006, 62, 110. https://doi.org/10.1016/j.ejpb.2005.07.006
  4. Frenkel, V. Adv. Drug. Deliv. Rev. 2008, 60, 1193. https://doi.org/10.1016/j.addr.2008.03.007
  5. Schroeder, A.; Kost, J.; Barenholz, Y. Chem. Phys. Lipids 2009, 162, 1. https://doi.org/10.1016/j.chemphyslip.2009.08.003
  6. Suzuki, R.; Oda, Y.; Utoguchi, N.; Maruyama, K. J. Control Release 2011, 149, 36. https://doi.org/10.1016/j.jconrel.2010.05.009
  7. Choi, J.; Lee, J. H.; Shin, T. H.; Song, H. T.; Kim, E. Y.; Cheon, J. J. Am. Chem. Soc. 2010, 132, 11015. https://doi.org/10.1021/ja104503g
  8. Mody, V. V.; Nounou, M. I.; Bikram, M. Adv. Drug. Del. Rev. 2009, 61, 795. https://doi.org/10.1016/j.addr.2009.04.020
  9. Glogard, C.; Stensrud, G.; Hovland, R.; Fossheim, S. L.; Klaveness, J. Int. J. Pharm. 2002, 233, 131. https://doi.org/10.1016/S0378-5173(01)00935-8
  10. Accardo, A.; Tesauro, D.; Aloj, L.; Pedone, C.; Morelli, G. Coor. Chem. Rev. 2009, 253, 2193. https://doi.org/10.1016/j.ccr.2009.01.015
  11. Hak, S.; Sanders, H. M. H. F.; Agrawal, P.; Langereis, S.; Grull, H.; Keizer, H. M.; Arena, F.; Terreno, E.; Strijkers, G. J.; Nicolay, K. Eur. J. Pharm. Biopharm. 2009, 72, 397. https://doi.org/10.1016/j.ejpb.2008.09.017
  12. Eisenwiener, K. P.; Powell, P.; Macke, H. R. Bioorg. Med. Chem. Lett. 2000, 10, 2133. https://doi.org/10.1016/S0960-894X(00)00413-3
  13. Leon-Rodriguez, L. M.; Kovacs, Z. Bioconjugate Chem. 2008, 19, 391. https://doi.org/10.1021/bc700328s
  14. Han, H. D.; Lee, A.; Song, C. K.; Hwang, T.; Seong, H.; Lee, C. O.; Shin, B. C. Int. J. Pharm. 2006, 313, 181. https://doi.org/10.1016/j.ijpharm.2006.02.007
  15. Han, H. D.; Lee, A.; Hwang, T.; Song, C. K.; Seong, H.; Hyun, J.; Shin, B. C. J. Control Release 2007, 120, 161. https://doi.org/10.1016/j.jconrel.2007.03.020
  16. Jung, S. H.; Jung, S. H.; Seong, H.; Cho, S. H.; Jeong, K. S.; Shin, B. C. Int. J. Pharm. 2009, 382, 254. https://doi.org/10.1016/j.ijpharm.2009.08.002
  17. Hwang, T.; Han, H. D.; Song, C. K.; Seong, H.; Kim, J. H.; Chen, X.; Shin, B. C. Macromol. Symp. 2007, 249, 109. https://doi.org/10.1002/masy.200750318
  18. Adler-Moore, J. P.; Proffitt, R. T. J. Liposome Res. 1993, 3, 429. https://doi.org/10.3109/08982109309150729
  19. Moribe, K.; Maruyama, K.; Iwatsuru, M. Int. J. Pharm. 1999, 199, 193.
  20. Malinin, V. S.; Frederik, P.; Lentz, B. R. Biophys. J. 2002, 82, 2090. https://doi.org/10.1016/S0006-3495(02)75556-2
  21. Evjen, T. J.; Nilssen, E. A.; Rognvaldsson, S.; Brandl, M.; Fossheim, S. L. Eur. J. Pharm. Biopharm. 2011, 75, 327.
  22. Kusube, M.; Matsuki, H.; Kaneshina, S. Biochim. Biophys. Acta 2005, 1668, 25. https://doi.org/10.1016/j.bbamem.2004.11.002
  23. Kamaly, N.; Miller, A. D. Int. J. Mol. Sci. 2010, 11, 1759. https://doi.org/10.3390/ijms11041759
  24. Yan, G. P.; Robinson, L.; Hogg, P. Radiography 2007, 13, 5. https://doi.org/10.1016/j.radi.2006.07.005

Cited by

  1. Gadolinium(III)-Chelated Silica Nanospheres Integrating Chemotherapy and Photothermal Therapy for Cancer Treatment and Magnetic Resonance Imaging vol.7, pp.45, 2015, https://doi.org/10.1021/acsami.5b06938
  2. Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00157