DOI QR코드

DOI QR Code

Synthesis, Characterization, and the Influence of Functionalized Multi-Walled Carbon Nanotubes with Creatinine and 2-Aminobenzophenone on the Gastric Cancer Cells

  • Tahermansouri, Hasan (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University) ;
  • Aryanfar, Yaser (Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University) ;
  • Biazar, Esmaeil (Department of Biomaterials Engineering, Tonekabon branch, Islamic Azad University)
  • Received : 2012.09.12
  • Accepted : 2012.10.22
  • Published : 2013.01.20

Abstract

The chemical functionalization of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) by creatinine (MWCNT-Amide) and latter modification with 2-aminobenzophenone for producing 1-methyl-9-phenyl-1H-imidazo[4,5-b]quinolin-2-amine (MWCNT-quino) have been investigated. All products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, elemental analysis, thermogravimetric analysis, derivative thermogravimetric and cellular investigations. The interesting point is that MWCNT-quino can be homogeneously dispersed in dimethylformamide and to some extent in ethyl alcohol without sonication. Also, MTT assay was used to examine the behavior of cell proliferation after 48 h of cell culture experiments. Cellular results showed high toxicity of MWCNT-quino on the cancer cells. These functionalizations have been chosen due to active sites of carbonyl and methylene groups in MWCNT-Amide and the creating quinoline derivative on the MWCNTs for future application.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes; Wiley-VCH: Berlin, 2010.
  3. Hu, H.; Ni, Y.; Montana, V.; Haddon, R. C.; Parpura, V. Nano Lett. 2004, 4, 507. https://doi.org/10.1021/nl035193d
  4. Venkatesan, N.; Yoshimitsu, J.; Ito, Y.; Shibata, N., Takada, K. Biomaterials 2005, 26, 7154. https://doi.org/10.1016/j.biomaterials.2005.05.012
  5. Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, M. et al. Angew Chem Int Ed. 2004, 43, 5242. https://doi.org/10.1002/anie.200460437
  6. Kalita, G.; Adhikari, S.; Aryal, H. R.; Ghimre, D. C.; Afre, R.; Soga, T. Physica E 2008, 41, 299. https://doi.org/10.1016/j.physe.2008.07.015
  7. Yu, J. G.; Huang, K. L.; Tang, J. C. Physica E 2008, 41, 181. https://doi.org/10.1016/j.physe.2008.04.009
  8. Yu, J. G.; Huang, K. L.; Liu, S. Q.; Tang, J. C. Physica E 2008, 40, 689. https://doi.org/10.1016/j.physe.2007.09.082
  9. Azizian, J.; Tahermansouri, H.; Biazar, E.; Heidari, S.; Chobfrosh Khoei, D. Int. J. Nanomedicine 2010, 5, 907.
  10. Azizian J.; Chobfrosh Khoei, D.; Tahermansouri, H.; Yadollahzadeh, K. Fullerenes, Nanotubes, and Carbon Nanostructures 2011, 19, 753. https://doi.org/10.1080/1536383X.2010.515762
  11. Azizian, J.; Tahermansouri, H.; Chobfrosh Khoei, D.; Yadollahzadeh, K.; Delbari, A. S. Fullerenes, Nanotubes and Carbon Nanostructures 2012, 20, 183. https://doi.org/10.1080/1536383X.2010.533311
  12. Tahermansouri, H.; Chobfrosh Khoei, D.; Meskinfam, M. Orient. J. Chem. 2011, 27, 499.
  13. Tahermansouri, H.; Atghaee, M.; Azadfar, M. Orient. J. Chem. 2011, 27, 1325.
  14. Moradi, O.; Yari, M.; Zare, K.; Mirza, B.; Najafi, F. Fullerenes, Nanotubes and Carbon Nanostructures 2012, 20, 138. https://doi.org/10.1080/1536383X.2010.533312
  15. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105. https://doi.org/10.1021/cr050569o
  16. Adamson, R. H.; Thorgeirsson, U. P.; Snyderwine, E. G.; Reeves, J.; Dalgard, D. W.; Takayama, S. et al. Jpn. J. Cancer Res. 1990, 81, 10. https://doi.org/10.1111/j.1349-7006.1990.tb02500.x
  17. Dyke, C. A.; Tour, J. M. Chem. Eur. J. 2004, 10, 812. https://doi.org/10.1002/chem.200305534
  18. Gabriel, G.; Sauthier, G.; Fraxedas, J.; Moreno-Manas, M.; Martinez, M. T.; Miravitlles, C. et al. Carbon 2006, 44, 1891. https://doi.org/10.1016/j.carbon.2006.02.010
  19. Hiura, H.; Ebbesen, T. W.; Tanigaki, K.; Takahashi, H. Chem. Phys. Lett. 1993, 202, 509. https://doi.org/10.1016/0009-2614(93)90040-8
  20. Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 17. https://doi.org/10.1002/adma.200401340

Cited by

  1. Synthesis of Isatin Derivative on the Short Multiwalled Carbon Nanotubes and Their Effect on the MKN-45 and SW742 Cancer Cells vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/697839
  2. Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3391
  3. Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.045
  4. Synthesis of novel thiazolidine-4-one derivatives and their anticancer activity vol.192, pp.3, 2017, https://doi.org/10.1080/10426507.2016.1239197
  5. Chemical Surface Modification of CNTs via Three Oxidative Acid Treatments vol.1107, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1107.320
  6. Synthesis and Applications of Imidazoquinolines: A Review vol.50, pp.2, 2018, https://doi.org/10.1080/00304948.2018.1433427
  7. One-pot and Three-component Functionalization of Short Multi-walled Carbon Nanotubes with Isatoic Anhydride and Benzyl Amine and Their Effect on the MKN-45 and MCF7 Cancer Cells vol.23, pp.6, 2015, https://doi.org/10.1080/1536383x.2013.868440
  8. The picric acid removal from aqueous solutions by multi‐walled carbon nanotubes/ EDTA /carboxymethylcellulose nanocomposite: Central composite design optimization, kinetic, and i vol.68, pp.11, 2013, https://doi.org/10.1002/jccs.202100339