DOI QR코드

DOI QR Code

Titanium Containing Solid Core Mesoporous Silica Shell: A Novel Efficient Catalyst for Ammoxidation Reactions

  • Venkatathri, N. (Department of Chemistry, National Institute of Technology Warangal) ;
  • Nookaraju, M. (Department of Chemistry, National Institute of Technology Warangal) ;
  • Rajini, A. (Department of Chemistry, National Institute of Technology Warangal) ;
  • Reddy, I.A.K. (Department of Chemistry, National Institute of Technology Warangal)
  • Received : 2012.07.23
  • Accepted : 2012.10.22
  • Published : 2013.01.20

Abstract

Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.

Keywords

References

  1. Taramaso, M.; Perego, G.; Notari, B. U.S. Patent, 4410501, 1983.
  2. Huybrechts, D. R. C.; DeBruycker, L.; Jacobs, P. A. Nature 1990, 345, 240. https://doi.org/10.1038/345240a0
  3. Corma, A. Chem. Rev. 1997, 97, 2373. https://doi.org/10.1021/cr960406n
  4. Bhaumik, A.; Kumar, R. J. Chem. Soc., Chem. Commun. 1995, 349.
  5. Venuto, P. B. Micropor. Mater. 1994, 2, 297. https://doi.org/10.1016/0927-6513(94)00002-6
  6. Thangaraj, A.; Kumar, R.; Mirajkar, S. P.; Ratnasamy, P. J. Catal. 1990, 130, 1.
  7. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J. L.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  8. Tenev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994, 368, 321. https://doi.org/10.1038/368321a0
  9. Bhaumik, A.; Tatsumi, T. J. Catal. 2000, 189, 31. https://doi.org/10.1006/jcat.1999.2690
  10. Bhaumik, A.; Samata, S.; Mal, N. K. Microporous and Mesoporous Materials 2004, 68, 29. https://doi.org/10.1016/j.micromeso.2003.12.005
  11. Fujiwara, M.; Shiokawa, K.; Tanaka, Y.; Nakahara, Y. Chem. Mater. 2004, 16, 5420. https://doi.org/10.1021/cm048804r
  12. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723. https://doi.org/10.1021/ja01864a025
  13. de Boer, J. H. The Structure and Properties of Porous Materials; Butterworths, London, 1958.
  14. IUPAC, Reporting Physisorption Data for Gas/Solid Systems, Pure Appl. Chem. 1957, 87, 603.
  15. Shan, Y.; Gao, L.; Zheng, S. Mater. Chem. Phys. 2004, 88, 192. https://doi.org/10.1016/j.matchemphys.2004.07.007
  16. Agger, J. R.; Anderson, M. W.; Pemble, M. E.; Terasaki, O.; Nozue, Y. J. Phys. Chem. B 1998, 102, 3345. https://doi.org/10.1021/jp972994u
  17. Jhung, S.; Uh, Y. S.; Chon, H. Appl. Catal. 1990, 62, 61. https://doi.org/10.1016/S0166-9834(00)82237-X
  18. Kornatowski, J.; Wichterlova, B.; Roswadowski, M.; Baur, W. H. Stud. Surf. Sci. Catal. 1994, 84A, 117.
  19. Kaliaguine, S. In Preconference Summer School on Zeolites, Taejon, 1996.
  20. Castro-Martins, S. D.; Khouzanpi, S.; Tuel, A.; Taarit, Y. B.; Mur, N. E.; Sellami, A. J. Electroanal. Chem. 1993, 350, 15. https://doi.org/10.1016/0022-0728(93)80193-L
  21. Castro-Martins, S. D.; Tuel, A.; Taarit, Y. B. Zeolites 1994, 14, 130. https://doi.org/10.1016/0144-2449(94)90007-8
  22. Gontier, S.; Tuel, A. Stud. Surf. Sci. Catal. 1997, 105, 29. https://doi.org/10.1016/S0167-2991(97)80535-6
  23. Jahn, E.; Muller, D.; Wieker, W.; Richter-Mendau, J. Zeolites 1989, 9, 177. https://doi.org/10.1016/0144-2449(89)90022-5
  24. Mertens, J. A.; Martens, M.; Grobet, P. J.; Jacobs, P. A. In Innovation in Zeolite Materials Science, Grobet, P. J., Mortier, W. J., Vansant, E. F., Schulz-Ekloff, G., Eds.; Elsevier: Amsterdam, 1988; p 97.
  25. Brunner, E.; Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H. In Innovation in Zeolite Materials Science; Grobet, P. J., Mortier, W. J., Vansant, E. F., Schulz-Ekloff, G., Eds.; Elsevier: Amsterdam, 1988; p 155.
  26. Finger, G.; Jahn, E.; Zeigan, D.; Zibrowius, B.; Szulzewsky, K.; Richter-Mendau, J.; Bulow, M. Bull. Soc. Chim. Belges 1989, 98, 291.
  27. Bhaumik, A.; Kapoor, M. P.; Inagaki, S. Chem. Commun. 2003, 470.
  28. Reddy, J. S.; Kumar, R.; Sciscery, S. M. J. Catal. 1994, 145, 73. https://doi.org/10.1006/jcat.1994.1009
  29. Corma, A.; Domine, M. E.; Nemeth, L.; Valencia, S. J. Am. Chem. Soc. 2002, 124, 3194. https://doi.org/10.1021/ja012297m
  30. Corma, A.; Nemeth, L. T.; Renz, M.; Valencia, S. Nature 2001, 412, 426.
  31. Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. Chem. Mater. 2002, 14, 1657. https://doi.org/10.1021/cm010910v

Cited by

  1. Effect of triethylamine treatment of titanium silicalite-1 on cyclohexanone ammoximation in a continuous system vol.114, pp.2, 2015, https://doi.org/10.1007/s11144-014-0792-1
  2. Preparation of Silica Hollow Composite Particles vol.35, pp.11, 2013, https://doi.org/10.5012/bkcs.2014.35.11.3303