References
- Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach; Kluwer Academic: Boston, 1999.
- Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, 2nd ed.; Dekker, M., Ed.; New York, 1998.
- Genies, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Synth. Met. 1990, 36, 139. https://doi.org/10.1016/0379-6779(90)90050-U
- Alexander, P.; Ogurtsov, N.; Korzhenko, A.; Shapoval, G. Prog. Polym. Sci. 2003, 28, 1701. https://doi.org/10.1016/j.progpolymsci.2003.08.001
- Blinova, N. V.; Stejskal, J.; Trchova, M.; Prokes, J.; Omastova, M. Eur. Polym. J. 2007, 43, 2331. https://doi.org/10.1016/j.eurpolymj.2007.03.045
- Gospodinova, N.; Terlemezyan, L. Prog. Polym. Sci. 1998, 23, 1443. https://doi.org/10.1016/S0079-6700(98)00008-2
- Dey, A.; De, S.; De, A.; De, S. K. Nanotechnology 2004, 15, 1277. https://doi.org/10.1088/0957-4484/15/9/028
- Sung, J. H.; Choi, H. J. J. Macromol. Sci. B: Phys. 2005, 44, 365. https://doi.org/10.1081/MB-200057348
- Bae, W. J.; Kim, K. H.; Jo, W. H. Macromolecules 2004, 37, 9850. https://doi.org/10.1021/ma048829b
- Sarkar, A.; Ghosh, P.; Meikap, A. K.; Chattopadhyay, A. K.; Chatterjee, A. K.; Ghosh, M. J. Phys. D: Appl. Phys. 2006, 39, 3047. https://doi.org/10.1088/0022-3727/39/14/026
- Bian, C.; Xue, G. Mater. Lett. 2007, 61, 1299. https://doi.org/10.1016/j.matlet.2006.07.023
- Zhang, L.; Wan, M. J. Phys. Chem. B 2003, 107, 6748. https://doi.org/10.1021/jp034130g
- Schnitzler, D. C.; Meruvia, M. S.; Hümmelgen, I. A.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 4658. https://doi.org/10.1021/cm034292p
- Li, X.; Chen, W.; Bian, C.; He, J.; Xu, N.; Xue, G. Appl. Surf. Sci. 2003, 217, 16. https://doi.org/10.1016/S0169-4332(03)00565-8
- Chuang, F.-Y.;Yang, S.-M. Synth. Met. 2005, 152, 361. https://doi.org/10.1016/j.synthmet.2005.07.299
- Parvatikar, N.; Jain, S.; Kanamadi, C. M.; Chougule, B. K.; Bhoraskar, S. V.; Ambika Prasad, M. V. N. J. Appl. Polym. Sci. 2007, 103(2), 653. https://doi.org/10.1002/app.23869
- Makeiff, D. A.; Huber, T. Synth. Met. 2006, 156, 497. https://doi.org/10.1016/j.synthmet.2005.05.019
- Hatchett, D. W.; Josowicz, M. Chem. Rev. 2008, 108, 746. https://doi.org/10.1021/cr068112h
- Prakash, S.; Kale, B. B.; Amalnerkar, D. P. Synth. Met. 1999, 106, 53. https://doi.org/10.1016/S0379-6779(99)00109-5
- Sathiyanarayanan, S.; Syed Azim, S.; Venkatachari, G. Synth. Met. 2007, 157, 205. https://doi.org/10.1016/j.synthmet.2007.01.012
- Gangopadhyay, R.; De, A. Chem. Mater. 2000, 12, 608. https://doi.org/10.1021/cm990537f
- Cochet, M.; Maser, W. K.; Benito, A. M.; CalleJas, M. A.; Martinez, M. T.; Benoit, J. M.; Schreiber, J.; Chauvet, O. Chem. Commun. 2001, 16, 1450.
- Dyre, J. C.; Shroder, T. B. Rev. Mod. Phys. 2000, 72, 873. https://doi.org/10.1103/RevModPhys.72.873
- Wessling, B. Synth. Met. 1988, 27:A, 83. https://doi.org/10.1016/0379-6779(88)90128-2
- Singh, K.; Ohlan, A.; Bakshi, A. K.; Dhawan, A. K. Mater. Chem. Phys. 2010, 119, 201. https://doi.org/10.1016/j.matchemphys.2009.08.060
- Saini, D.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Synth. Met. 2011, 161, 1522. https://doi.org/10.1016/j.synthmet.2011.04.033
- Cranton, W. M.; Spink, D. M.; Stevens,V; Thomas, C. B. Thin Solid Films 1993, 226, 156. https://doi.org/10.1016/0040-6090(93)90222-B
- Jiayu, D.; Yuan, X.; Pengde, H.; Qitu, Z. J. Rare earth. 2010, 28, 765. https://doi.org/10.1016/S1002-0721(09)60197-6
- Schubert, D.; Dargusch, R.; Raitano, J.; Chan, S.-W. Biochem. Biophys. Res. Commun. 2006, 342, 86. https://doi.org/10.1016/j.bbrc.2006.01.129
- Syed Khasim; Raghavendra, S. C.; Revanasiddappa, M.; Sajjan, K. C.; Mohana Lakshmi; Muhammad Faisal. Bulletin of Materials Science 2011, 34, 1557. https://doi.org/10.1007/s12034-011-0358-z
- Nanni, F.; Travaglia, P.; Valentini, M. Comp. Sci. Tech. 2009, 69, 485. https://doi.org/10.1016/j.compscitech.2008.11.026
- Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G. Macromolecules 1991, 24, 779. https://doi.org/10.1021/ma00003a022
- Du, J.; Liu, Z.; Han, B.; Li, Z.; Zhang, J.; Huang, Y. Micropor. Mesopor. Mat. 2005, 84, 254. https://doi.org/10.1016/j.micromeso.2005.05.036
- Kang, E. T.; Neoh, K. G.; Tan, K. L. Prog. Polym. Sci. 1998, 23, 277. https://doi.org/10.1016/S0079-6700(97)00030-0
- Durmus, Z.; Baykal, A.; Kavas, H.; Ozeri, H. S. Physica B 2011, 406, 1114.
- Kulkarni, M. V.; Viswanath, A. K.; Marimuthu, R.; Seth, T. Polym. Eng. Sci. 2004, 44, 1676. https://doi.org/10.1002/pen.20167
- Sapurina, I.; Stejskal, J. Polym Int. 2008, 57, 1295. https://doi.org/10.1002/pi.2476
- Anilkumar, K. R.; Parveen, A.; Badiger, G. R.; Ambika Prasad, M. V. N. Physica B 2009, 404, 1664. https://doi.org/10.1016/j.physb.2009.01.046
- Stejskal, J.; Gilbert, R. G. Pure Appl. Chem. 2002, 74, 857. https://doi.org/10.1351/pac200274050857
- Zhang, D. Polym. Test. 2007, 26, 9. https://doi.org/10.1016/j.polymertesting.2006.07.010
- Li, X.; Li, X.; Wang, G. Mater. Chem. Phys. 2007, 102, 140. https://doi.org/10.1016/j.matchemphys.2006.11.014
- Long, Y.; Chen, Z.; Shen, J.; Zhang, Z.; Zhang, L.; Huang, K.; Wan, M.; Jin, A.; Gu, C.; Duvail, J. L. Nanotechnology 2006, 17, 5903. https://doi.org/10.1088/0957-4484/17/24/001
- Mott, N. F.; Davis, E. A. Electronic Processes in Non-crystalline Materials, Oxford: Clarendon Press; New York: Oxford University Press, 1979.
- Reghu, M.; Subramanyam, S. V.; Chatterjee, S. Phys. Rev. B 1991, 43, 4236. https://doi.org/10.1103/PhysRevB.43.4236
- Papathanassiou, A. N.; Sakellis, I.; Grammatikakis, J. Appl. Phys. Lett. 2007, 91, 122911. https://doi.org/10.1063/1.2779255
- Bowen, C. R.; Dent, A. C. E.; Almond, D. P.; Comyn, T. P. Ferroelectrics 2008, 370, 166. https://doi.org/10.1080/00150190802381522
- Papathanassiou, A. N.; Sakellis, I.; Grammatikakis, J.; Sakkopoulos, S.; Vitoratos, E.; Dalas, E. Synth. Met. 2004, 42, 81.
- Hunt, A. G. Phil. Mag. B 2001, 81, 875. https://doi.org/10.1080/13642810108205779
- Jiang, J.; Ai, L. H.; Qin, D. B.; Liu, H.; Li, L. C. Synth. Met. 2009, 159, 695. https://doi.org/10.1016/j.synthmet.2008.12.021
- Kim, H. M.; Lee, C. Y.; Joo, J. Korean Phys. Soc. 2000, 36, 371.
- Pinto, N. J.; Shah, P. D.; Kahol, P. K.; McCormic, B. J. Solid State Commun. 1996, 97, 1029. https://doi.org/10.1016/0038-1098(95)00853-5
- Baskran, R.; Selvasekarapandian, S.; Hirankumar, G.; Bhuvaneswari, M. S. J. Power Source 2004, 134, 235. https://doi.org/10.1016/j.jpowsour.2004.02.025
- Thomas, P.; Dwarakanath, K.; Varma, K. B. R. Synth. Met. 2009, 159, 2128. https://doi.org/10.1016/j.synthmet.2009.08.001
- Saini, P.; Choudhary, V. Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Mater. Chem. Phys. 2009, 113, 919. https://doi.org/10.1016/j.matchemphys.2008.08.065
- Pramanik, P. K.; Saha, T. N.; Khastgir, D. J. Elastomers Plast. 1991, 23, 345. https://doi.org/10.1177/009524439102300406
Cited by
- Analysis of DC and AC properties of a humidity sensor based on polyaniline–chromium oxide composites vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1715-7
- Novel Method to Synthesize Highly Conducting Polyaniline/ Nickel Sulfide Nanocomposite Films and the Study of Their Structural, Magnetic, and Electrical Properties vol.50, pp.8, 2014, https://doi.org/10.1109/TMAG.2014.2320448
- Dielectric Constant and Transport Mechanism of Percolated Polyaniline Nanoclay Composites. vol.53, pp.43, 2014, https://doi.org/10.1021/ie502922b
- Electromagnetic interference shielding boards produced using Tetra Paks waste and iron fiber vol.17, pp.2, 2015, https://doi.org/10.1007/s10163-014-0255-9
- Humidity sensing properties of surface modified polyaniline ZnO nanocomposites vol.35, pp.4, 2015, https://doi.org/10.1108/SR-01-2015-0024
- Fabrics and their composites for electromagnetic shielding applications vol.47, pp.2, 2015, https://doi.org/10.1080/00405167.2015.1067077
- Fabrication of a novel PANI/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite with enhanced dielectric constant and ac-conductivity vol.28, pp.19, 2017, https://doi.org/10.1007/s10854-017-7279-6
- Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
- Low and high frequency shielding effectiveness of PVC-PPy films pp.1436-2449, 2017, https://doi.org/10.1007/s00289-017-2143-7
- Electrical Properties Investigation of Unsaturated Polyester Resin with Carbon Black as Fillers vol.554, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.554.145
- The effect of molecular structure, band gap energy and morphology on the dc electrical conductivity of polyaniline/aluminium oxide composites vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001688
- Optimized polyaniline-transition metal oxide composites: A comparative study of alternating current conductivity via correlated barrier hopping model vol.39, pp.10, 2017, https://doi.org/10.1002/pc.24375
- Influence of Nickel Layer on Electromagnetic Interference Shielding Effectiveness of CuS-Polyacrylonitrile Fibers pp.12295949, 2018, https://doi.org/10.1002/bkcs.11615
- with improved electromagnetic shielding properties in X-band vol.135, pp.26, 2018, https://doi.org/10.1002/app.46413
- Enhancement in alternating current conductivity of HCl doped polyaniline by modified titania pp.1568-5543, 2018, https://doi.org/10.1080/09276440.2018.1499352
- Effect of mechanical mixing method of preparation of polyaniline-transition metal oxide composites on DC conductivity and humidity sensing response vol.29, pp.9, 2018, https://doi.org/10.1007/s10854-018-8714-z
- Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review pp.1558-3716, 2019, https://doi.org/10.1080/15583724.2018.1546737
- Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2317-7
- Effect of 8 MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite vol.134, pp.1, 2019, https://doi.org/10.1140/epjp/i2019-12462-0
- X-band microwave absorption and dielectric properties of polyaniline-yttrium oxide composites vol.14, pp.3, 2013, https://doi.org/10.1515/epoly-2013-0079
- X-band microwave absorption and dielectric properties of polyaniline-yttrium oxide composites vol.14, pp.3, 2013, https://doi.org/10.1515/epoly-2013-0079
- Electromagnetic Interference Shielding Effectiveness and Electrical Conductivity of Ni Coated Pcabs/Pps Composites with Reinforcement of Carbon Fibre vol.24, pp.1, 2016, https://doi.org/10.1177/096739111602400107
- Chemically synthesized poly(o-methoxyaniline): Influence of counterions on the structural and electrical properties vol.1205, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2019.127588
- Review-Electrocatalytic Oxidation of Alcohols Using Chemically Modified Electrodes: A Review vol.167, pp.13, 2013, https://doi.org/10.1149/1945-7111/abb9d0
- Cost effective photocatalytic and humidity sensing performance of green tea mediated copper oxide nanoparticles vol.134, pp.None, 2013, https://doi.org/10.1016/j.inoche.2021.108974