DOI QR코드

DOI QR Code

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong (Department of Nano Engineering, Inje University) ;
  • Lee, Sang-Heon (School of Chemical Engineering, Yeungnam University) ;
  • So, Wonshoup (School of Chemical Engineering, Yeungnam University) ;
  • Yoon, Hyunsik (Department of Nano Engineering, Inje University) ;
  • Park, Hyunggil (Department of Nano Engineering, Inje University) ;
  • Kim, Young Gue (Department of Nano Engineering, Inje University) ;
  • Kim, Soaram (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Jung, Jae Hak (Department of Nano Engineering, Inje University) ;
  • Lee, Jewon (Department of Nano Engineering, Inje University) ;
  • Kim, Yangsoo (Department of Nano Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Engineering, Inje University)
  • Received : 2012.09.10
  • Accepted : 2012.10.08
  • Published : 2013.01.20

Abstract

The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Keywords

References

  1. Look, D. C. Mater. Sci. Eng. B 2001, 80, 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  2. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897. https://doi.org/10.1126/science.1060367
  3. Hoffman, R. L.; Norris, B. J.; Wager, J. F. Appl. Phys. Lett. 2003, 82, 733. https://doi.org/10.1063/1.1542677
  4. Liu, K. W.; Ma, J. G..; Zhang, J. Y.; Lu, Y. M.; Jiang, D. Y.; Li, B. H.; Zhao, D. X.; Zhang, Z. Z.; Yao, B.; Shen, D. Z. Solid-State Electron. 2007, 51, 757. https://doi.org/10.1016/j.sse.2007.03.002
  5. Liu, K. W.; Shen, D. Z.; Shan, C. X.; Zhang, J. Y.; Yao, B.; Zhao, D. X.; Lu, Y. M.; Fan, X. W. Appl. Phys. Lett. 2007, 91, 201106. https://doi.org/10.1063/1.2805816
  6. Hayamizu, S.; Tabata, H.; Tanaka, H.; Kawai, T. J. Appl. Phys. 1996, 80, 787. https://doi.org/10.1063/1.362887
  7. Anna Selvan, J. A.; Keppner, H.; Shah, A. Mater. Res. Soc. Symp. Proc. 1996, 426, 497. https://doi.org/10.1557/PROC-426-497
  8. Deschanvres, J. L.; Bochu, B.; Joubert, J. C. J. Phys. 1993, 4, 485.
  9. Messaoudi, C.; Sayah, D.; Abd-Lefdil, M. Phys. Status Solidi 1995, 151, 93. https://doi.org/10.1002/pssa.2211510110
  10. O'Brien, P.; Saeed, T.; Knowles, J. J. Mater. Chem. 1996, 6, 1135. https://doi.org/10.1039/jm9960601135
  11. Schuler, T.; Aegerter, M. A. Thin Solid Films 1999, 351, 125.
  12. Kamalasanan, M. N.; Chandra, S. Thin Solid Films 1996, 288, 112. https://doi.org/10.1016/S0040-6090(96)08864-5
  13. Jimenez Gonzalez, A. E.; Soto Urueta, J. A. Sol. Energy Mater. Sol. Cells 1998, 52, 345. https://doi.org/10.1016/S0927-0248(97)00243-2
  14. Srikant, V.; Clarke, D. R. J. Appl. Phys. 1998, 83, 5447. https://doi.org/10.1063/1.367375
  15. Goldsmith, S. Surf. Coat. Technol. 2006, 201, 3993. https://doi.org/10.1016/j.surfcoat.2006.08.007
  16. Fan, X. M.; Lian, J. S.; Zhao, L.; Liu, Y. H. Appl. Surf. Sci. 2005, 252, 420. https://doi.org/10.1016/j.apsusc.2005.01.018
  17. Jie, J.; Wang, G.; Han, X.; Fang, J.; Xu, B.; Yu, Q.; Liao, Y.; Li, F.; Hou, J. G. J. Crystal Growth 2004, 267, 223. https://doi.org/10.1016/j.jcrysgro.2004.03.072
  18. Petersen, J.; Brimont, C.; Gallart, M.; Cregut, O.; Schmerber, G.; Gilliot, P.; Honerlage, B.; Ulhaq-Bouillet, C.; Rehspringer, J. L.; Leuvrey, C.; Colis, S.; Slaoui, A.; Dinia, A. Microelectr. J. 2009, 40, 239. https://doi.org/10.1016/j.mejo.2008.07.061
  19. Pan, X. H.; Jiang, J.; Zeng, Y. J.; He, H. P.; Zhu, L. P.; Ye, Z. Z.; Zhao, B. H.; Pan, X. Q. J. Appl. Phys. 2008, 103, 023708. https://doi.org/10.1063/1.2828017
  20. Pfisterer, D.; Sann, J.; Hofmann, D. M.; Plana, M.; Neumann, A.; Lerch, M.; Meyer, B. K. Phys. Stat. Sol. (b) 2006, 243, R1. https://doi.org/10.1002/pssb.200541406
  21. Qiu, J.; Li, X.; He, W.; Park, S.-J.; Kim, H.-K.; Hwang, Y.-H.; Lee, J.-H.; Kim, Y.-D. Nanotechnology 2009, 20, 155603. https://doi.org/10.1088/0957-4484/20/15/155603
  22. Su, S. C.; Lu, Y. M.; Xing, G. Z.; Wu, T. Superlattice Microst. 2010, 48, 485. https://doi.org/10.1016/j.spmi.2010.08.010
  23. Ozgur, U.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, B.; Cho, S.-J.; Morkoc, H. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
  24. Look, D. C. Mater. Sci. Eng. B 2001, 80, 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  25. Yang, X. D.; Xu, Z. Y.; Sun, Z.; Sun, B. Q.; Ding, L.; Wang, F. Z.; Ye, Z. Z. J. Appl. Phys. 2006, 99, 046101. https://doi.org/10.1063/1.2171779
  26. Dietrich, C. P.; Brandt, M.; Lange, M.; Kupper, J.; Bontgen, T.; von Wenckstern, H.; Grundmann, M. J. Appl. Phys. 2011, 109, 013712. https://doi.org/10.1063/1.3530610
  27. Shibata, H. Jpn. J. Appl. Phys. 1998, 37, 550. https://doi.org/10.1143/JJAP.37.550

Cited by

  1. Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3335
  2. Influence of Cr-doping on the structural and the optical properties of ZnO thin films prepared by sol-gel spin coating vol.64, pp.1, 2014, https://doi.org/10.3938/jkps.64.41