References
- Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
- Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
- Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
- Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
- Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochim. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
- Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108. https://doi.org/10.1103/PhysRevB.68.195108
- Sides, C. R.; Croce, F.; Young, V. Y.; Martion, C. R.; Scrosati, B. Electrochem. Solid-State Lett. 2005, 8, A484. https://doi.org/10.1149/1.1999916
- Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439. https://doi.org/10.1149/1.2218308
- Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A.; Bruce, P. G. J. Am. Chem. Soc. 2008, 130, 5262. https://doi.org/10.1021/ja710849r
- Dominko, R.; Bele, M.; Goupil, J. M.; Gaberscek, M.; Hanzel, D.; Arcon, I.; Jamnik, J. Chem. Mater. 2007, 19, 2960. https://doi.org/10.1021/cm062843g
- Yu, D. Y. W.; Donoue, K.; Inoue, T.; Fujimoto, M.; Fujitani, S. J. Electrochem. Soc. 2006, 153, 835. https://doi.org/10.1149/1.2179199
- Fongy, C.; Gaillot, A. C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. J. Electrochem. Soc. 2010, 157, 885.
- Gaberscek, M. J. Power Sources 2009, 189, 22. https://doi.org/10.1016/j.jpowsour.2008.12.041
- Albertus, P.; Couts, J.; Srinivasan, V.; Newman, J. J. Power Sources 2008, 183, 771. https://doi.org/10.1016/j.jpowsour.2008.05.012
- Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. J. Electrochem. Soc. 2010, 157, A1236. https://doi.org/10.1149/1.3486161
- Chen, Y. H.; Wang, C. W.; Zhang, X.; Sastry, A. M. J. Power Sources 2010, 195, 2851. https://doi.org/10.1016/j.jpowsour.2009.11.044
- Safaria, M.; Delacourt, C. J. Electrochem. Soc. 2011, 158, 63.
- Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526. https://doi.org/10.1149/1.2221597
- Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 1. https://doi.org/10.1149/1.2054684
- Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 982. https://doi.org/10.1149/1.2054868
- Doyle, M.; Newman, J. J. Electrochem. Soc. 1996, 143, 1890. https://doi.org/10.1149/1.1836921
- Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1517. https://doi.org/10.1149/1.1785012
- Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1530. https://doi.org/10.1149/1.1785013
- Singh, G. K.; Ceder, G.; Bazant, M. Z. Electrochim. Acta 2008, 53, 7599. https://doi.org/10.1016/j.electacta.2008.03.083
- Tang, M.; Carter, W. C.; Chiang, Y. M. Annu. Rev. Mater. Res. 2010, 40, 501. https://doi.org/10.1146/annurev-matsci-070909-104435
- Tang, M.; Belak, J. F.; Dorr, M. R. J. Phys. Chem. C 2011, 115, 4922.
Cited by
- Structures as a High Performance Anode Material for Lithium Ion Batteries vol.11, pp.3, 2014, https://doi.org/10.1002/smll.201303894
- Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities vol.164, pp.11, 2017, https://doi.org/10.1149/2.0671711jes
- Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries vol.47, pp.3, 2017, https://doi.org/10.1007/s10800-017-1047-4
- Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries vol.69, pp.9, 2017, https://doi.org/10.1007/s11837-017-2404-9
- for Lithium-Ion Battery Industrial Applications vol.7, pp.12, 2017, https://doi.org/10.1002/aenm.201601625
- Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation vol.161, pp.8, 2014, https://doi.org/10.1149/2.018408jes
- Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes vol.163, pp.2, 2016, https://doi.org/10.1149/2.0321602jes
- Elasticity and Size Effects on the Electrochemical Response of a Graphite, Li-Ion Battery Electrode Particle vol.163, pp.3, 2016, https://doi.org/10.1149/2.0631603jes
- An Inverse Method for Estimating the Electrochemical Parameters of Lithium-Ion Batteries vol.164, pp.2, 2017, https://doi.org/10.1149/2.0221702jes
- Experimental and Modeling Analysis of Graphite Electrodes with Various Thicknesses and Porosities for High-Energy-Density Li-Ion Batteries vol.165, pp.7, 2018, https://doi.org/10.1149/2.0301807jes
- A Numerical Study of the Effects of Cell Formats on the Cycle Life of Lithium Ion Batteries vol.166, pp.10, 2013, https://doi.org/10.1149/2.0261910jes
- Role of Stress Concentrations on the Electrochemical Response of a Li-Ion Battery Anode Particle vol.166, pp.12, 2013, https://doi.org/10.1149/2.0881912jes
- Effect of Electrode and Electrolyte Thicknesses on All-Solid-State Battery Performance Analyzed With the Sand Equation vol.7, pp.None, 2020, https://doi.org/10.3389/fenrg.2019.00168
- Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization vol.29, pp.6, 2013, https://doi.org/10.1088/1674-1056/ab90f8
- Design Principles to Govern Electrode Fabrication for the Lithium Trivanadate Cathode vol.167, pp.10, 2013, https://doi.org/10.1149/1945-7111/ab91c8
- Myth and Reality of a Universal Lithium‐Ion Battery Electrode Design Optimum: A Perspective and Case Study vol.9, pp.6, 2021, https://doi.org/10.1002/ente.202000989
- Simplified Li Ion Cell Model for BMS Coupling an Equivalent Circuit Dynamic Model with a Zero Dimensional Physics Based SEI Model vol.168, pp.11, 2013, https://doi.org/10.1149/1945-7111/ac3597