DOI QR코드

DOI QR Code

Preparation of Surface-Hydrolyzed Cellulose Acetate Fibers and Their Applications to LCD Rubbing Cloth

표면가수분해된 셀룰로오스 아세테이트 섬유의 제조 및 LCD 러빙포로의 응용

  • Kim, Hyun-Sun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김현선 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2012.08.03
  • Accepted : 2012.09.10
  • Published : 2013.01.25

Abstract

Partially hydrolyzed cellulose acetate (CA) fibers were prepared by treating CA fibers in aqueous $Na_2CO_3$ solutions of various concentrations. The deacetylation of CA fibers was confirmed through FTIR spectra and WAXD patterns. The hydrolysis was confined to the surface part of the CA fiber by controlling the treatment conditions. The resultant fibers had a sheath-core structure with a sheath component of regenerated cellulose and a core of non-hydrolyzed cellulose acetate. The SEM images of the surface-hydrolyzed CA fibers, the core of which was dissolved out using acetone as the solvent, showed that the sheath thickness increased with increasing alkaline concentration, indicating an increase in the hydrolyzed fiber, i.e., regenerated cellulose. Polarized FTIR analysis of the polyimide film rubbed with velvet fabrics of surface-hydrolyzed CA fibers showed that polyimide molecules were preferentially oriented to the rubbing direction.

셀룰로오스 아세테이트(CA) 섬유를 $Na_2CO_3$ 용액으로 가수분해하여 탈아세테이트 반응시키면 레이온 섬유로 전환된다. 이때 처리조건을 조절함으로써 표면만 가수분해시켜, 표면은 레이온 성분이고 내부는 CA 성분으로 된 sheath-core형 표면가수분해 CA(SH-CA) 섬유를 얻었다. 시료들의 가수분해는 FTIR 스펙트럼 및 WAXD 패턴으로 분석하였으며, CA 성분을 아세톤으로 용출시킨 시료들의 SEM 사진으로부터 sheath-core 구조를 확인하였다. 이 sheath-core 형태의 SH-CA 섬유로 된 벨벳 직물을 사용하여, 액정디스플레이(LCD)용 폴리이미드 배향막을 러빙시키고 편광 FTIR 스펙트럼으로 분석하여 이 SH-CA 섬유 벨벳직물이 LCD용 러빙포로 사용될 수 있음을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. W. Dong, M. H. Yi, and S. H. Paek, Polymer(Korea), 27, 484 (2003).
  2. D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972). https://doi.org/10.1103/PhysRevLett.28.1683
  3. M. Yamahara, M. Nakamura, N. Koide, and T. Sasaki, Mol. Cryst. Liq. Cryst., 466, 39 (2007). https://doi.org/10.1080/15421400701246275
  4. H. J. Ahn, J. J. Lee, J. S. Ahn, K. C. Park, J. G. Noh, D. Y. Yoo, and S. H. Paek, Polymer(Korea), 35, 385 (2011).
  5. J. M. Greary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100 (1987). https://doi.org/10.1063/1.339124
  6. D. C. Coleman, "Rayon", in Courtaulds, Oxford Univ. Press, London, Vol II, pp 61-75 (1969).
  7. C. M. Buchanan, K. J. Edgar, and A. K. Wilson, Macromolecules, 24, 3060 (1991). https://doi.org/10.1021/ma00011a005
  8. H. A. Krassing, Cellulose: Structure, Accessibility and Reactivity, Gordon and Breach Science Publichers, Swizerland, pp 41-130 (1993).
  9. A. Ishikawa, T. OKano, and J. Sugiyama, Polymer, 38, 463 (1997). https://doi.org/10.1016/S0032-3861(96)00516-2
  10. M. Lewin and S. B. Sello, Editors, Handbook of Fiber Science and Technology, Marcel Dekker, NY, USA, Vol 1, Part A, p 95 (1983).
  11. I. S. Lim, J. P. Kim, S. Y. Kwak, Y. S. Ko, and Y. K. Kwon, Polymer, 47, 1333 (2006). https://doi.org/10.1016/j.polymer.2005.12.070
  12. F. J. Kolpak, M. Weih, and J. Blackwell, Polymer, 19, 123 (1978). https://doi.org/10.1016/0032-3861(78)90027-7
  13. Y. B. Kim and B. S. Ban, Liquid Crystal, 26, 1579 (1999). https://doi.org/10.1080/026782999203553
  14. T. J. Lee, S. G. Hahm, S. W. Lee, and B. Chae, Mater. Sci. Eng. B, 132, 64 (2006). https://doi.org/10.1016/j.mseb.2006.02.037
  15. A. Seeboth, Display, 20, 131 (1999). https://doi.org/10.1016/S0141-9382(99)00014-1
  16. J. A. Castello, Mol. Cryst. Liq. Cryst., 94, 33 (1983). https://doi.org/10.1080/00268948308084245
  17. D. W. Berreman, Mol. Cryst. Liq. Cryst., 23, 215 (1973). https://doi.org/10.1080/15421407308083374
  18. A. Mosley, B. M. Nicholas, and P. A. Gass, Display, 8, 17 (1987). https://doi.org/10.1016/0141-9382(87)90003-5
  19. E. S. Lee, P. Vetter, T. Miyashita, and T. Uchida, Jpn. J. Appl. Phys., 32, L1339 (1993). https://doi.org/10.1143/JJAP.32.L1339
  20. I. H. Kim, W. S. Kim, and K. Ha, Polymer(Korea), 26, 209 (2002).
  21. S. Ishihara, H. Wakemoto, K. Nakazima, and Y. Matsuo, Liquid Crystal, 4, 669 (1989). https://doi.org/10.1080/02678298908033202