References
- M. Abert, On the probability of satisfying a word in a group, Cornell University Library, preprint, 2005, available online at http://arxiv.org/abs/math/0504312.
- A.M. Alghamdi and F. G. Russo, A generalization of the probability that the commutator of two group elements is equal to a given element, Bull. Iranian Math. Soc., in press.
- N. M. Ali and N. Sarmin, On some problems in group theory of probabilistic nature, Technical Report, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2009.
- R. Brandl and L.-C. Kappe, On n-Bell groups, Comm. Algebra 17 (1989), no. 4, 787- 807. https://doi.org/10.1080/00927878908823759
- K. Chiti, M. R. R. Moghaddam, and A. R. Salemkar, n-isoclinism classes and n- nilpotency degree of finite groups, Algebra Colloq. 12 (2005), no. 2, 255-261. https://doi.org/10.1142/S1005386705000246
- P. Erd˝os and P. Turan, On some problems of a statistical group-theory. IV, Acta Math. Acad. Sci. Hungar 19 (1968), 413-435. https://doi.org/10.1007/BF01894517
- A. Erfanian and R. Rezaei, On the commutativity degree of compact groups, Arch. Math. (Basel) 93 (2009), no. 4, 201-212.
- A. Erfanian and F. G. Russo, Probability of mutually commuting n-tuples in some classes of compact groups, Bull. Iranian Math. Soc. 34 (2008), no. 2, 27-37.
- A. Erfanian, B. Tolue, and N. Sarmin, Some consideration on the n-th commutativity degrees of finite groups, Ars. Comb. (2010), in press.
- P. X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175-179. https://doi.org/10.1007/BF01113339
- W. H. Gustafson, What is the probability that two groups elements commute?, Amer. Math. Monthly 80 (1973), 1031-1034. https://doi.org/10.2307/2318778
- P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
- K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter, Berlin, 2006.
- K. H. Hofmann, S. Morris, and M. Stroppel, Locally compact groups, residual Lie groups, and varieties generated by Lie groups, Topology Appl. 71 (1996), no. 1, 63-91. https://doi.org/10.1016/0166-8641(95)00068-2
- K. H. Hofmann and F. G. Russo, The probability that x and y commute in a compact group, Cornelly University Library, 2010, available online at http://arxiv.org/ abs/1001.4856.
- P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177 (1995), no. 3, 847-869. https://doi.org/10.1006/jabr.1995.1331
- M. Levy, On the probability of satisfying a word in nilpotent groups of class 2, Cornell University Library, preprint, 2011, available online at http://arxiv.org/abs/1101.4286.
- Y. Medvedev, On compact Engel groups, Israel J. Math. 135 (2003), 147-156. https://doi.org/10.1007/BF02776054
- H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford, Clarendon Press, 1968.
- R. Rezaei and F. G. Russo, Bounds for the relative n-th nilpotency degree in compact groups, Asian-Eur. J. Math. 4 (2011), no. 3, 495-506. https://doi.org/10.1142/S1793557111000411
- R. Rezaei and F. G. Russo, n-th relative nilpotency degree and relative n-isoclinism classes, Carpathian J. Math. 27 (2011), no. 1, 123-130.
- D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer-Verlag, Berlin, 1972.
- D. Segal, Words: Notes on verbal width in groups, LMS Lecture Notes Serie 361, Cambridge University Press, Cambridge, 2009.
- J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z. 89 (1965), 345-347. https://doi.org/10.1007/BF01112166
Cited by
- Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups vol.39, pp.8, 2016, https://doi.org/10.2989/16073606.2016.1247118